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Abstract
The inherent structure of human cognition facilitates the hierarchical organization of semantic categories for three-dimensional
objects, simplifying the visual world into distinct andmanageable layers. A vivid example is observed in the animal-taxonomy
domain, where distinctions are not only made between broader categories like birds and mammals but also within subcat-
egories such as different bird species, illustrating the depth of human hierarchical processing. This observation bridges to
the computational realm as this paper presents deep hierarchical learning (DHL) on 3D data. By formulating a probabilistic
representation, our proposed DHL lays a pioneering theoretical foundation for hierarchical learning (HL) in visual tasks.
Addressing the primary challenges in effectiveness and generality of DHL for 3D data, we 1) introduce a hierarchical reg-
ularization term to connect hierarchical coherence across the predictions with the classification loss; 2) develop a general
deep learning framework with a hierarchical embedding fusion module for enhanced hierarchical embedding learning; and
3) devise a novel method for constructing class hierarchies in datasets with non-hierarchical labels, leveraging recent vision
language models. A novel hierarchy quality indicator, CH-MOS, supported by questionnaire-based surveys, is developed to
evaluate the semantic explainability of the generated class hierarchy for human understanding. Our methodology’s validity
is confirmed through extensive experiments on multiple datasets for 3D object and scene point cloud semantic segmentation
tasks, demonstrating DHL’s capability in parsing 3D data across various hierarchical levels. This evidence suggests DHL’s
potential for broader applicability to a wide range of tasks.
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1 Introduction

Recent advancements in 3D sensing technologies, such as
LiDAR and RGB-D cameras, have not only become more
accessible and cost-effective but have also spurred significant
developments in understanding real-world scenes from 3D
data (Bello et al., 2020; Guo et al., 2020a). This progress has
been influential in fields ranging from autonomous driving
(Cui et al., 2021) to urban planning (Carozza et al., 2014), and
from nursing robots (King et al., 2010) to digital twin tech-
nologies (Mirzaei et al., 2022) and simulations (Manyoky et
al., 2014). At the heart of this advancement is 3D semantic
segmentation, essential for classifying fine-grained seman-
tic categories. Despite its progress, driven by recent deep
learning advancements, the current paradigm in 3D semantic
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Fig. 1 Examples of class hierarchies inCampus3D (Li et al., 2020). The
hierarchal labels from Campus3D are derived from CityGML (Kolbe
et al., 2005), which are aligned with the inherent hierarchal nature of
real-world modeling. Our 3D DHL is supposed to capture and leverage
this structural knowledge by learning

segmentation often struggles with the semantic complexity
of real-world data, particularly in handling its hierarchical
nature, as depicted in Fig. 1. In contrast, human intelligence
excels in interpreting the visual world hierarchically (Uyar et
al., 2016; Kaiser et al., 2019). For instance, humans naturally
categorize fish and horses under animals, and cars and buses
under vehicles. This innate hierarchical inference capabil-
ity of human intelligence has inspired numerous successful
machine learning applications across various domains (Silla
& Freitas, 2011).

Conventional 3D semantic segmentation techniques are
predominantly based on simple and rigid assumptions: the
semantic category of a 3D point is unique and indepen-
dent, and thus points should be distinctly categorized during
prediction (Guo et al., 2020a; Nguyen & Le, 2013). Nev-
ertheless, objects or scenes in the real three-dimensional
world often decompose into entities with hierarchical struc-
tures, a complexity not encompassed by the aforementioned
strategies. For a case in point, “Ground” in a 3D scene can
be decomposed into “Pathway”, “Playfield”, “Road” and
“Natural” (see Fig. 1). Various applications could leverage
such hierarchical properties since it allows the same high-
resolution 3D data to be used for tasks at different abstraction
levels. One practical example is the Level of Detail (LoD),
which is defined by the widely-used virtual 3D city for-
mat, CityGML, for urban reconstruction (Kolbe et al., 2005).
There are five standard levels, represented as LoD0 to LoD4,
which enable CityGML to be used in a wide range of appli-
cations, from urban planning and noise modeling (which
requires lower LoDs) to simulations of Computational Fluid

Dynamics (CFD) (which requires moderate LoDs) and then
to drone navigation (which requires higher LoDs) (Luebke,
2003). Despite the grave importance of hierarchical semantic
structure, this area remains largely unexplored in the existing
landscape of the 3D segmentation literature (Li et al., 2022;
Guo et al., 2020a; Gao et al., 2021). Only two exceptions
stand out: Campus3D (Li et al., 2020) and PartNet (Mo et
al., 2019). Their main contributions are to propose the 3D
hierarchical semantic segmentation problem by providing
hierarchically annotated datasets. Expanding upon the foun-
dations laid by PartNet and Campus3D, this paper presents a
novel learning framework calledDeepHierarchical Learning
(DHL). The primary aim of DHL is to facilitate a more com-
prehensive understanding of 3D hierarchy-aware semantic
segmentation.

Although the concept of hierarchy-aware 3D seman-
tic segmentation receives limited attention, its associated
problem is extensively explored in the realms of machine
learning (Li et al., 2022; Silla & Freitas, 2011; Athanasopou-
los et al., 2020). These works referred to as Hierarchical
Classification which is a multi-label classification problem
and classes are hierarchically organized as a tree or a directed
acyclic graph (DAG); in these structures, each node cor-
responds to a semantic label, and edges depict the label
dependencies; every data sample is associated with a or mul-
tiple root-to-leaf paths within the given class hierarchy (Silla
& Freitas, 2011). These efforts are dedicated to ensuring that
the predicted labels conform to the DAG relationship in an
intuitive manner, the concept of which is referred to as “hier-
archical coherence” (Bi & Kwok, 2011). Among them, it is
implemented on the loss function either as a regularization
term (Wehrmann et al., 2018; Li et al., 2020; Chen et al.,
2022) or weighting strategies for penalizing errors individ-
ually for classes at different levels of the hierarchy (Bilal
et al., 2017; Giunchiglia & Lukasiewicz, 2020; Li et al.,
2022; Bertinetto et al., 2020). However, these works rely-
ing on ad-hoc design may lack a throughout analysis of the
optimality of the solution. Moreover, when applying hier-
archical classification to computer vision tasks, especially
in fine-grained segmentation tasks, there has been limited
exploration beyond the scope of a recent work (Li et al.,
2022). It has proposed a straightforward inter-pixel relation-
ship under the context of hierarchical learning but has not
scaled from 2D to 3D data. Overall, previous studies have
not established a comprehensive and universal analysis of
the hierarchical learning problem, and they have substantial
limitations in extending the applications to more practical
fields such as 3D segmentation.

This paper attempts to outline a general theoretical expres-
sion of hierarchical coherence, and thus establish a universal
framework for fine-grained 3D vision tasks. Specifically,
inspired by hierarchical forecasting (HF) for time series
(Athanasopoulos et al., 2023; Hyndman & Athanasopou-
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los, 2018), we introduce an aggregation matrix of HF to
refine a numerical relationship among classes at different
hierarchy levels. Utilizing this relationship, we propose the
equivalence between the minimization of cross-entropy for
classification and themaximization of hierarchical coherence
in HL. This equivalence reinterprets the constraints of hierar-
chical coherence, which were previously intuitive but vague,
through the lens of probability. We then abstract a simple
yet effective implementation of a hierarchical loss based on
it. While the loss function is originally formulated to clas-
sify singular samples, i.e., points, a fine-grained task such as
semantic segmentation, involving various samples, requires a
thorough consideration of the interrelations among multiple
points (Nickel & Kiela, 2017).

To address this goal, we design a deep module cus-
tomized for learning point-wise embeddings that align with
cross-points hierarchical relationships. Previous studies pri-
marily focused on constraining sample embeddings by the
loss in deep metric learning (Chen et al., 2018; Mousavi et
al., 2017; Niu et al., 2017; Yang et al., 2020; Wehrmann
et al., 2018). However, applying these techniques to 3D
point clouds, which are inherently dense in space and con-
tain numerous samples, is notably resource-intensive and
inefficient. Therefore, we propose the novel idea of integrat-
ing the information of the hierarchical structure of points
directly within the architecture of a deep model. In partic-
ular, we propose a hierarchical embedding fusion module
(HEFM) module to learn point-wise embeddings that con-
siders two conditions: the top-down coherence condition
(TDCC) and the bottom-up coherence condition (BDCC),
which are derived from the previous analysis of hierar-
chical coherence in the context of multiple sample cases.
Our subsequent experiments demonstrate that the deep HL
method, incorporating the proposed hierarchical coherence
loss and HEFM, substantially improves the performance of
3D semantic segmentation across various granularity levels.
This advancement is expected to boost applications in 3D
scene reconstruction and shape part segmentation.

We also extend ourmethod into awider dimension beyond
the hierarchically annotated tasks. The results of our method
in these tasks suggest that incorporating class hierarchy can
improve fine-grained segmentation performance, aligning
with previous research findings (Chen et al., 2018). This
improvement is attributed to the fact that, as mentioned in
(Li et al., 2020; Chen et al., 2018), hierarchical structures
provide additional guidance for fine-grained classification,
addressing geometric ambiguity issues where objects may be
geometrically similar but semantically distinct. This leads to
a new question: canwe generate class hierarchies for datasets
that are only annotated with fine-grained labels to aid in
task learning? Towards the question, by considering the low
scalability and high cost of manually labeling, we propose
to generate the semantic hierarchies from the fine-grained

classes via leveraging the recent process in the multimodal-
ity field. We first use the pretrained vision language model
(VLM), such as CLIP (Radford et al., 2021), to derive seman-
tic embeddings of classes that encapsulate both semantic and
geometric characteristics. Subsequently, we adapt hierarchi-
cal clustering methods to create a class dendrogram, which
is further refined into a class hierarchy using large language
models (LLM).Due to the comprehensive training datasets of
these models, our method exhibits enhanced standardization
and universality compared to the potentially biased and non-
standardized views of annotators. In this sense, human review
can serve as an evaluative tool to assess the interpretability
of the generated class hierarchy rather than participating in
its construction. We validate the efficacy of our proposed
method through experimental studies on the SensatUrban
dataset (Hu et al., 2021), which is characterized by singu-
lar annotation.

In summary, we make four major contributions:

• To the best of our knowledge, we are the first to formalize
the hierarchical learning problem within a probabilis-
tic representation for 3D vision. This formalization with
theoretical results stimulates the establishment of quan-
titative relationships among different hierarchical levels,
providing a foundation for a novel hierarchical coherency
loss.

• We introduce a generalized deep framework for con-
ducting 3D semantic segmentation across various hier-
archical levels. This framework incorporates a deep
module designed to derive point-wise embeddings, cap-
turing hierarchical relationships, and achieving cross-
point coherence conditions (i.e., BDCC and TDCC).

• We propose a pragmatic strategy for extracting hierar-
chical annotations from datasets annotated solely at a
fine-grained level. Thismethod leverages recent advance-
ments in multimodal domains (e.g., CLIP) and hierar-
chical clustering, potentially expanding the applicability
of 3D datasets to diverse tasks. Additionally, we have
developed a novel class hierarchy quality indicator, class
hierarchy mean opinion score (CH-MOS), to evaluates
the explainability of the generated class hierarchy for
human understanding.

• We validate the effectiveness of our proposed loss func-
tion and deep module through point cloud semantic seg-
mentation (PCSS) tasks applied to existinghierarchically-
annotated 3D object and scene datasets. Our results
demonstrate significant enhancements in PCSS perfor-
mance, underscoring the utility of our approach. To
encourage further development in HL, we will release
the source code upon the publication of this paper.

This paper is an extension of the conference oral presen-
tation paper (Li et al., 2020). The extension includes the
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following aspects: first, we introduce the new constraints
to refine the proposed hierarchical framework in (Li et al.,
2020), and prove thatminimizing cross-entropywith the con-
straint is essentially equivalent to maximizing coherence in
the hierarchy; second, we integrate a novel deep module
into the framework which further enhances the point-wise
embedding in the hierarchical segmentation task. finally,
the experimental studies are significantly expanded from
the single dataset Campus3D to PartNet (Mo et al., 2019),
SensatUrban (Hu et al., 2021) as well as indoor dataset
ScanNet200 (Rozenberszki et al., 2022) where piratical solu-
tions of class hierarchy generation for fine-grained annotated
datasets (e.g., SensatUrban) is supplied.

The remainder of this paper is structured as follows: Sect. 2
provides a review of relatedwork, followed by themathemat-
ical formulation and essential background knowledge of the
problem in Sect. 3. Sect. 4 presents and discusses the frame-
work proposed in this study. Experimental studies and their
results are detailed in Sect. 5. Finally, the paper concludes
with Sect. 6, summarizing the findings and possible exten-
sions of this work.

2 RelatedWork

The related work of this paper can be divided into three parts:
1) hierarchical classification, 2) 3D point cloud semantic seg-
mentation and 3) hierarchical forecasting (HF). The details
of each part are reviewed as follows.

2.1 Hierarchical Classification

Hierarchical classification is a classical machine learning
problem and has been widely applied in different areas (Silla
& Freitas, 2011), such as image classification (Deng et al.,
2009; Bengio et al., 2010), text classification (Bengio et al.,
2010) as well as gene function prediction (Barutcuoglu et
al., 2006). In this problem, the class labels are organized
in a predefined hierarchy and each data point is associated
with one or multiple paths in the hierarchy; the hierarchy
can be either a tree or a direct acylic graph (DAG) (Silla &
Freitas, 2011; Giunchiglia & Lukasiewicz, 2020; Li et al.,
2022). For the problem associated with multiple paths, it is
known as hierarchical multilabel classification (HMC) prob-
lem. Based on the survey by Silla and Freitas (Silla & Freitas,
2011), approaches can be roughly divided into three groups:
flat classification, local classification and global classifica-
tion. The first method is hierarchy-agnostic and trivial, and it
only trains a classifier for the most fine-grained classes (leaf
nodes). Then the rest coarse-grained classes are predicted
by a bottom-up manner via coherence constraint; the local
classification approach first proposed by Koller and Sahami
(1997). It trains independent classifiers for each node within

taxonomy, and then generate predictions in a top-down man-
ner. This approach results in error propagation problem and
various methods have been proposed to solve it (Bennett &
Nguyen, 2009; Bi & Kwok, 2015; Ramaswamy et al., 2015;
Zhang et al., 2017). Another significant challenge in local
classification is determining the positive and negative train-
ing examples for each class (node), especially given the need
to address class imbalance problem (Eisner et al., 2005; Fagni
& Sebastiani, 2007; Xu & Geng, 2019). Unlike localized
strategies, the global approach applies a unified classification
model for the entirety of a hierarchy’s classes. This method
has been exemplified in models such as CLUS-HMC (Vens
et al., 2008), Clus-Ens (Vens et al., 2008), and in various
neural network based methods (Masera & Blanzieri, 2019;
Borges&Nievola, 2012). These pioneermodels demonstrate
the potential of global approaches, offering a holistic per-
spective towards class hierarchies as opposed to scrutinizing
individual class entities, thereby fostering efficient classifi-
cation procedures.

Within the realm of computer vision, the enhanced capa-
bilities of deep learning fortify the process of hierarchy-
aware classification and segmentation. The existingwork can
be categorized into three primary sections (Li et al., 2022;
Bertinetto et al., 2020): 1) hierarchical embedding - which
entails both data and label transformation based on the hier-
archy (Bengio et al., 2010; Nickel & Kiela, 2017; Chen et
al., 2018); 2) hierarchical loss - which focuses on enhanc-
ing the consistency across various levels of hierarchy in both
training and predictions(Li et al., 2022, 2020; Giunchiglia &
Lukasiewicz, 2020), and 3) hierarchical architectures (Mo et
al., 2019; Yu et al., 2019; Yan et al., 2015; Zweig & Wein-
shall, 2007;Wehrmann et al., 2018; Jiang et al., 2019) -which
entails the design of neural network layers that draw inspira-
tion from hierarchies.

Ourwork is the simple path classification and the class tax-
onomy is a tree. Inspired by preceding efforts, we are the first
to explore the inherent link between classification accuracy
and coherence. Rather than treating the coherence constraint
as a mere regularization item, we delve deeper and establish
a theoretical relationship between cross-entropy minimiza-
tion and coherency maximization. An innovative step in our
approach involves the use of an aggregation matrix to quanti-
tativelymodel and interpret the relationships among different
hierarchical levels of classes. This fresh perspective has pro-
found implications for the hierarchy-aware classification.

2.2 Point Cloud Semantic Segmentation

3D point cloud semantic segmentation (PCSS) is a challeng-
ing vision task, and it requires multi-granularity features;
the methods can be roughly divided into four groups: 1)
projection-based methods (Lawin et al., 2017; Audebert et
al., 2017; Tatarchenko et al., 2018; Zhang et al., 2020), 2)
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voxelization-based methods (Choy et al., 2019; Zhu et al.,
2021; Rethage et al., 2018), 3) point-based methods (Guo et
al., 2020b; Qi et al., 2017b; Choy et al., 2019; Hu et al., 2020;
Zhao et al., 2021; Yang et al., 2023; Wu et al., 2024), and
4) hybrid methods (Dai and Nießner, 2018; Liu et al, 2019b;
Tang et al, 2020). The first two can leverage the power of deep
learning on 2D/organized data via transforming irregular 3D
points into regular data. However, they suffer from the prob-
lem of information loss. The efficiency of the hybridmethods
is low. Our work belongs to the third group, which directly
learn unorganized points and is pioneered by PointNet (Qi et
al., 2017a). It uses shared multilayer perceptions (MLPs) to
extract the per-point features, which is computationally effi-
cient.But it is not able to learn local feature aroundeachpoint.
To address this limitation, various extensions have been pro-
posed and they can be grouped into four categories (Guo et
al., 2020a; Hu et al., 2020): 1) neighboring feature pooling
(Qi et al., 2017b; Hu et al., 2020; Huang et al., 2018; Zhao et
al., 2019), 2) attention based methods (Zhang & Xiao, 2019;
Lai et al., 2022), 3) CNN-based methods (Mao et al., 2019;
Thomas et al., 2019; Su et al., 2018), and 4) graph-based
methods (Liu et al., 2019a; Jiang et al., 2019). Although
these studies have achieved good performance, there is no
hierarchical relationship among class labels.

Our work is significantly different from the above works.
The labels are single-layerwhilewe are processing hierarchi-
cal labels which is motivated by LoD in CityGML (Kolbe et
al., 2005).Moreover, we have provided a uniform framework
for large-scale 3D point cloud segmentation.

2.3 Hierarchical Learning in Visual Tasks

Hierarchical relationships naturally exist in visual under-
standing tasks, leading to extensive research incorporating
such structural information. Therefore, hierarchical meth-
ods have since proliferated across various domains: from
human parsing (Wang et al., 2019a, 2020) leveraging body-
part relationships, to general semantic segmentation using
graph neural networks (Li et al., 2022) for structured knowl-
edge propagation. Specifically for HMC of images, modern
approaches have explored various techniques including label
embedding (Fromeet al., 2013;Akata et al., 2015), hierarchy-
aware losses (Bertinetto et al., 2020; Zhao et al., 2011), and
hierarchical architectures (Yan et al., 2015; Ahmed et al.,
2016). Recently, a significant advancement in hierarchical
learning came through clustering approaches. While tradi-
tional hierarchical clustering methods (Kobren et al., 2017)
faced scalability issues, recent gradient-based methods in
hyperbolic space (Monath et al., 2019; Chami et al., 2020;
Long & van Noord, 2023) have shown superior performance

by optimizing continuous relaxations of discrete clustering
objectives. These methods leverage hyperbolic geometry’s
natural ability to represent tree-like structures (Nickel &
Kiela, 2017; Sala et al., 2018), enabling both theoretical guar-
antees and improved empirical results.

However, extending these methods from instance-based
to dense prediction tasks remains challenging due to high
computational cost of clustering.While initial fsattempts like
Deep Hierarchical Semantic Segmentation (Li et al., 2022)
propose sampling strategies to manage computational com-
plexity, they face significant limitations for large-scale 3D
scenes containing hundreds of thousands of points. The chal-
lenge becomes particularly acute when dealing with multiple
object instances in 3D point clouds, where existing sam-
pling strategies may fail to capture long-range hierarchical
relationships and lack theoretical guarantees for their approx-
imations.

2.4 Hierarchical Forecasting

The HF was first proposed by Orcutt (Orcutt et al., 1968)
in studying the information loss in data aggregation. Fol-
lowing it, two main widely studied methods appeared in
the literature: a) bottom-up (Shlifer & Wolff, 1979) and b)
top-down (Hyndman&Athanasopoulos, 2018); the first gen-
erates forecasts of the coarse-grained by summing up that of
fine-grainedwhile the second decomposes the coarse grained
forecasts to the fined-grained ones. The results are naturally
coherent, but they failed to use features of all hierarchical lev-
els. In order to address this limitation, forecast reconciliation
has been studied which combines the forecasts to make them
coherent (Hyndman et al., 2011;Wickramasuriya et al., 2019;
Zhang et al., 2023); both linear and non-linear optimal com-
binations were reported (Wang et al., 2022; Athanasopoulos
et al., 2023). Notably, the hierarchy was represented by a
binary matrix which is noted as aggregation matrix (Hynd-
man et al., 2011; Athanasopoulos et al., 2023) which defines
how the bottom-level data aggregate to the above level data.
The aggregation matrix was adjusted as a constraint matrix
(Di Fonzo & Girolimetto, 2022) and binary values were also
extended to real values (Athanasopoulos et al., 2020).

Our work is different from the above methods in two
aspects: 1) these methods only utilize the hierarchy structure
to post-process forecasts instead of integrating the structure
into the learning/training process for coherence; 2) themajor-
ity of HF works are time series-based regression problems.
There is little HF-based research for classification problems,
and, to the best of our knowledge, we are the first to apply
the binary aggregationmatrix to classification tasks (Athana-
sopoulos et al., 2023).
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3 Preliminary

3.1 Class Hierarchy

Let (Q, �) denote the class hierarchy, where Q = {cq}Qq=1
and � represent a finite set of semantic classes and pairwise
order relationships between classes, respectively. This hier-
archy relationship and its properties are formally defined in
the following.

Definition 1 (Super-class/Sub-class) For any cp, cq ∈ Q,
cp � cq if cq is a super-class of cp; alternatively, cp is a
sub-class of cq .

Assumption 1 Given any 1 � q � k � p � Q, the order
relationship � satisfies the following three properties.

• asymmetric: ∀q �= p, if cp � cq then cq �� cp
• reflexive: cp � cp
• transitive: ∀p �= q, p �= k and k �= q, cp � ck and

ck � cq imply cp � cq

The above definitions and assumptions ensure that setQ is
a partially ordered set. The ordered class set can be structured
as a tree by adding a synthetic root node, which is exampled
by Fig. 2. Next, we define the concept of a class layer which
is a subset of Q.

Definition 2 (Class layer) If a non-singleton set � ⊆ Q
satisfies that any two of classes in � cannot be compared by
�, then it is a class layer.

In this formulation, we note that multiple class layers can
be extracted from class hierarchy Q, and each class set is
referred to as a class layer of a hierarchy.

Definition 3 (Super/sub-class layer) Let � = {cp}mp=1 and

�′ = {c′
q}m′

q=1 denote two class layers, if

{
∀c′

q ∈ �′, ∃!cp ∈ �, c′
q � cp,

∀cp ∈ �, ∃c′
q ∈ �′, c′

q � cp,
(1)

then � is the super-class layer of �′;alternatively, �′ is
the sub-class layer of �. We refer to such relationship as
�′ � �.

Lemma 1 Super/sub-class layer relationship is transitive.

In a class hierarchy, we can extract a sequence of class
layers that can be ordered by the super-sub-class layer
relationship. For instance of the hierarchy in Fig. 2, the
extracted layers can be {BD,TR}, {RF,WL,AS,VE,RD}
and {RF,WL,AS,CR,BS,MR,PW}. It is noted that dis-
tinct layers may share common classes to fulfill the definition

Fig. 2 An example class tree of 11 labels; the class name of each is
below each node and, for ease presentation, the short name is inside
each node. Each edge represents an order relationship (e.g., RF � BD,
CR � VE � TR). An auxiliary root node is added to organize class
labels into a tree structure

of the super/sub layer, such as {RF,WL,AS} in the above
examples. Formally, we denote the extracted sequence as
{�(1), · · · ,�(H)} with size H , and class layers in the
sequence adhering to the following relationship: �(h) �
�(h−1) for h = 2, · · · , H which is the layer number.We also
note that any two class layers in the sequence are super/sub
class layers due to Lemma 1.

3.2 Hierarchical Learning

The hierarchical learning (HL) can be further formulated
based on the class layers sequence {�(h)}Hh=1. In general,
a single-label learning (SL) problem involves learning a pre-
dictor parameterized by θ that can output a label distribution
pθ (y|x) for a data sample x. The distribution is based on
a single class layer. When transitioning to a HL problem,
it expands the SL to accommodate multi-predictors scenar-
ios. Namely, HL is to obtain a set of preditors {pθh (y|x)}Hh=1
of which each label prediction is based on a class layer in
the given sequence, i.e., the predicted labels of pθh (y|x) are
drawn from �(h). Moreover, the objective of HL is to align
the label predictor with ground-truth (GT) label distribution,
which for h-th class layer is given by

p̂h(y|x) =
{
1 y = cp(h) ,

0 y ∈ �(h)\cp(h) ,
(2)

where cp(h) ∈ �(h) is the annotated label of x for the h-th
class layer.

Although the output format of an HL predictor is the same
as a combination of multiple single-label predictors across
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several class layers, the essential difference between HL and
a combination lies in the explicit super/sub-class relation-
ship among the GT label distributions. The relationship is
specified by

if
H∏

h=1

p̂h(cq(h) |x) = 1, (3)

then cq(h) � cq(h−1) ,∀ h = 2, · · · , H , (4)

which implies the set of predicted labels drawn from GT
label distributions is indeed a path of the tree showcased by
Fig. 2. Therefore, effective hierarchical learning necessitates
incorporating this relationship into the learning process, the
crux of which lies in the following concept of hierarchical
coherence for predictions.

Definition 4 (CoherenceScore)Given twopredictors pθ ′ and
pθ on two class layers, the coherence score κθ,θ ′ of one sam-
ple x is defined as

κθ,θ ′(x) = E c∼pθ (y|x)

c′∼pθ ′ (y|x)

[1(c � c′)], (5)

where 1(·) is the indicator function. If κθ,θ ′(x) = 1, we say
pθ ′ and pθ are hierarchically coherent (HC) predictions
for x.

The aforementioned definitions elucidate the predictions
of two distinct layers within the HL framework. If these pre-
dictions are HC, then predicted class labels drawn from these
distributions would satisfy the super/sub class relationship.
Furthermore, it is easy to conclude the following lemma of
the GT label distributions of an arbitrary sample.

Lemma 2 Given the GT distributions of a HL problem
denoted by p̂1, · · · , p̂h, · · · , p̂H , p̂h−1 and p̂h are HC pre-
dictions for any samples for 2 � h � H.

The Lemma can be easily proved by substituting (2) and
(3) to definition (5). Using this Lemma, we can incorporate a
constraint, i.e., , the HC constraint, into the HL problem,
which aids the learning process in understanding the GT
distributions. Subsequently, we demonstrate the following
properties of HC predictions which are necessary conditions
of HC.

Lemma 3 Given two class layers � = {cp}mp=1 and �′ =
{c′

q}m′
q=1, without loss of generality, we assume �′ � �, if

the two predictors pθ and pθ ′ based on � and �′ separately
are HC predictions for a sample x, the following bottom-
dominated coherence constraint (BDCC) and top-dominated
coherence constraint (TDCC) hold:

• BDCC: if the predicted probability of a class c′
q in �′ is

1, then the probability of the class in� being super-class
of c′

q is 1, i.e.,

pθ ′(c′
q |x) = 1 ⇒ pθ (cp|x) = 1,∀c′

q � cp. (6)

• TDCC: if the predicted probability of a class cp in� is 0,
then the probability of any classes in �′ being sub-class
of cp is 0, i.e.,

pθ (cp|x) = 0 ⇒ pθ ′(c′
q |x) = 0,∀c′

q � cp. (7)

The proof is referred to Appendix A. This Lemma intro-
duces two more detailed properties of HC predictions.
Considering a sequence of class layers in the HL problem,
two predictors associated with �(h−1) and �(h) are expected
to be trained to fulfill the above constraints.

4 Methodology

In this section, we present our solution to the HL problem,
with a particular focus on addressing HC as discussed pre-
viously. To address these challenges, we have developed a
novel deep framework, illustrated in Fig. 3. The framework
contains two key parts for HL: (1) a loss function aiming at
the HC constraint; (2) a deep architecture focusing on the
cross-point hierarchical relationship constraint.

4.1 Overall Architecture

The proposed framework depicted in Fig. 3 takes the raw
point cloud as input and facilitates the learning of hier-
archically coherent predictions. It consists of three key
components:

• Multi-task Network (MTN): We employs a shared
point-wise encoder-decoder coupled with multiple task-
specific prediction heads, where each head corresponds
to a distinct hierarchical label level. The MTN archi-
tecture enables simultaneous prediction across multiple
class layers through dedicated task heads while leverag-
ing shared geometric features from the encoder.

• Hierarchical Coherence (HC) Loss: Our proposed net-
work is trained end-to-end by minimizing a combination
of the HC loss and cross-entropy loss, where the HC loss
is derived from the Theorem.

• Hierarchical Embedding Fusion Module (HEFM):
The HEFM leverages structured knowledge (i.e., TDCC
and BDCC) to refine point embeddings, generating
hierarchy-aware point representations and enhancing
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Fig. 3 Architect of HL. It consists of three parts: Multi-task Network (MTN), hierarchical embedding fusion module (HEFM) and hierarchical
coherence (HC) loss

coherence in predictions. The architecture is displayed
in Fig. 4.

4.2 Hierarchical Coherence Loss

Drawing inspiration from hierarchical regression (Athana-
sopoulos et al., 2023), we propose the use of an aggregation
matrix (AM) to establish a quantitative relationship among
predictions at different hierarchical layers. To construct the
HC loss function, we first formally define the AM which
builds the quantitative relationship among difference class
hierarchy layers.

Definition 5 (Aggregation Matrix) Given a class set � =
{cp}mp=1 is the super-class set of class set �′ = {c′

q}m′
q=1,

the aggregation matrix is A�(h−1),�(h) = [ap,q ]m×m′ ∈
{1, 0}m×m′

associated with � and �′, of which the element
is given by

ap,q = 1(c′
q � cp). (8)

Take the class hierarchy of Fig. 2 as an example. If �′ =
{RF,WL,AS,VE,RD} and� = {BD,TR}, the correspond-
ing AM is:

A�,�′ =
RF WL AS VE BD( )

BD 1 1 1 0 0
TR 0 0 0 1 1

.

Based on the definition of AM, we present the following
theorem.

Theorem Given two predictions of for a sample x πθ (x) and
πθ ′(x) defined on layers� = {ci }mi=1 and�′ = {c′

j }m
′

j=1, they
are denoted by

π θ (x) = [pθ (c1|x), · · · , pθ (cm |x)]
,

πθ ′(x) = [pθ ′(c′
1|x), · · · , pθ ′(c′

m′ |x)]
.

Suppose the aggregation matrix between � and �′ denoted
by A, if the predictions satisfy that

|πθ (x) − Aπθ ′(x)| = 0, (9)

then the entropy Hθ (y|x) → 0 implies κθ,θ ′(x) → 1, where
Hθ (y|x) = π θ (x)
 logπ θ (x).

The proof is provided in Appendix B. In essence, the
theorem postulates a crucial conclusion within HL. It states
that when a prediction πθ based on the super-class layer is
deterministic (e.g., the GT prediction) and its corresponding
sub-class layer prediction πθ ′ , satisfying equation (9), this
pair of predictions is HC. Based on this theorem, the HL loss
is divided into two parts. The first part is the classification
loss, referring to the cross entropy (CE) loss across multiple
class layers for each point, which is given by

LCE(x) = −
H∑

h=1

∑
y∈�(h)

p̂h(y|x) log pθh (y|x). (10)

where p̂h and pθh are the predicted distribution for data x in
the h-th layer. The second part of the loss is a regularization
loss, inspired by (9), known as the hierarchical coherence
(HC) loss, represented as

LHC(x) =
H∑

h=2

∥∥π θh (x) − A�(h−1),�(h)π θh−1(x)
∥∥2 , (11)

where A�(h−1),�(h) is the aggregation matrix between the
h and h − 1 class layers in HL, the vector πθh (x) =
[pθh (c1|x), · · · , pθh (cm |x)]
 represents the prediction in
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Fig. 4 Architecture of HEFM. There are two components: 1) top-aware
fusion and 2) bottom-guided aggregation

layer h, and similarly πθh−1 is for layer h − 1. Finally, the
loss at a single point x is

L(x) = LCE(x) + λLHC(x), (12)

where λ is a balancing parameter. The total loss is the expec-
tation of L(x) for all x in the point clouds.

4.3 Hierarchical Embedding Fusion

The TDCC and BDCC constraints, as defined in Lemma 3,
outline the necessary conditions for hierarchically coherent
predictions. We contemplate employing them as constraints
for HL. However, direct utilization of TDCC and BDCC is
redundant regarding the loss in Sect. 4.2. We consider adapt-
ing them into soft constraints in terms of multiple samples,
i.e., inter-points constraints.

Proposition 1 Given the condition in Lemma 3 and two sam-
ples x1 and x2, following BDCC and TDCC hold:

• BDCC: if pθ ′(c′
q |x1)pθ ′(c′

q |x2) = 1, then

pθ (cp|x1)pθ (cp|x2) = 1,∀c′
q � cp. (13)

• TDCC: if pθ (cp|x1)pθ (cp|x2) = 0, then

pθ ′(c′
q |x1)pθ ′(c′

q |x2) = 0,∀c′
q � cp. (14)

The specific expression of this adaptation is that if two
points have inconsistent predictions at the super-class layer,
their predictions at the sub-class layer must be inconsistent
as well; if their predictions at the sub-class layer are consis-
tent, then their predictions at the super-class layer must also

be consistent. These constraints are integrated into the Hier-
archical Embedding Fusion Module (HEFM), illustrated in
Fig. 4. The HEFM comprises two essential components:

• Top-aware Fusion: It ensures that points associatedwith
the same super-class labels in the top-level should be
proximate to each other within the embedding space of
the bottom-level.

• Bottom-guided Aggregation: It enforces that points
linked to the same subclass labels in the bottom-level
should exhibit similarity within the top-level embedding
space.

The core idea behind HEFM is to regulate point embeddings
in a way that aligns with these constraints, rather than rely-
ing solely on pointwise constraints as specified in Lemma
3 which is computationally expensive. Now we introduce
the implementation detail. Note that the HEFM takes the
decoder’s output as the input. Specifically, we denote the
point embedding of the i-th point by the top-level decoder
as z(h−1)

i , while the point embedding by the bottom-level

decoder is denoted as z(h)
i .

Top-aware Fusion: New embedding of the bottom-level
is obtained by:

ẑ(h)
i = αz(h)

i + (1 − α)Proj
(
z(h−1)
i

)
(15)

where Proj(·) is a projection headwhich is a simpleMLPwith
batch normalization, andα ∈ [0, 1] is a tunable factor. In this
soft and learnable way, points belonging to different parent
categories are further repelled in fine-grained feature space,
whereas same parent category points are rarely affected. The
ẑ(h)
i is used to generate final bottom-level embeddings.
Bottom-guided Aggregation: New embedding of top-

level is obtained by:

ẑ(h−1)
i =

N∑
j=1

φ
(
z(h)
i , z(h)

j

)
z(h−1)
i , (16)

where s(·) is an attention score function which generates
a score based on the similarity between inputs. We use
soft attention in our implementation. Considering the large
amount of points in a scene, we propose to convert the aggre-
gation into a local version which reduces a considerable
computation overhead, which is denoted by

ẑ(h−1)
i =

∑
j∈Ni

φ
(
z(h)
i , z(h)

j

)
z(h−1)
i (17)

whereNi is the neighborhood point indices of the i-th point
and s(·) is in the form of a local attention score function,
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given by

φ
(
z(h)
i , z(h)

j

)
=

exp
(
z(h)
i



z(h)
j /τ

)
∑

j ′∈Ni
exp

(
z(h)
i



z(h)

j ′ /τ
) (18)

with a set parameter τ . In practice, s(·) measures the sim-
ilarity of the underlying embeddings, reintegrating those
top-level embeddings by these similarities. Therefore, the
similarity of two points in the bottom-level embeddings
will generate highly correlated top-level embeddings, which
subtly implements the constraint of TDCC. In our imple-
mentation, the neighbor size |Ni | is set to 40. An analysis of
computational cost is presented in Sect. 5.6.

4.4 Class HierarchyMining

The preceding sections detailed a method for training seg-
mentation models on hierarchically annotated 3D datasets.
Yet, the significant annotation effort required for such
datasets often limits their availability (Li et al., 2020; Mo
et al., 2019). To broaden our approach’s applicability, we
introduce a technique to construct a class hierarchy from
the fine-grained class labels within the dataset. Our method-
ology exploits a Vision Language Model (VLM) to derive
class embeddings. Subsequently, these embeddings inform a
hierarchical clustering process, producing a dendrogram of
classes. It’s essential to underscore that constructing a label
taxonomy for hierarchical 3D segmentation should account
for both the semantic relevance and the geometric character-
istics of the class. Recent advances in VLMs, particularly in
aligning geometric features in images with language embed-
dings, enable us to harness pre-trained embeddings for this
hierarchy extraction. We utilize the widely-acknowledged
CLIP text encoder (Radford et al., 2021), train on the
WebImage Text Dataset, to encode the fine-grained classes
present in the 3D dataset. For improved precision, we employ
the dataset’s class definitions as caption text, rather than
solely the class terms, thus mitigating potential word embed-
ding ambiguities. These embeddings then serve as features,
guiding the iterative merging of clusters from the original
fine-grained classes into a class dendrogram. Ultimately, we
employ a large language model (LLM) to prune the gener-
ated dendrogram, resulting in a semantically coherent class
hierarchy. This entire process is depicted in Fig. 5.

Let us delve deeper into the hierarchical agglomerative
clustering method we applied. Denote the set of fine-grained
classes as �(H). For each class ci ∈ �(H), its corresponding
embedding produced by theVLMis given byμi ∈ R

d , where
d signifies the dimensionality of the embedding space. The
foundational idea of our clustering approach is to continually
merge the two closest clusters based on certain distance met-
rics until only a single cluster remains. At the outset, every

Fig. 5 Overflow of Label HierarchyMining from Fine-grained Classes

fine-grained class label constitutes its own singleton cluster.
For any two clusters, {ci } and {c j } (where ci , c j ∈ �(H)),
their inter-distance di j is characterized using the cosine sim-
ilarity:

di j = μi · μ j

‖μi‖‖μ j‖
. (19)

During each iteration, only the two closest clusters are
merged. Subsequently, the distance between this newly
formed cluster and the existing ones is calculated using
Ward’s method (Ward Jr, 1963). For instance, if in the first
iteration, clusters {ci } and {c j } are merged to form a new
cluster {ci , c j }, the distance between this new cluster and
another singleton cluster {ck} (where k �= i and k �= j) is:

di∗k = si + sk
si + s j + sk

dik + s j + sk
si + s j + sk

dk j

− si + s j
si + s j + sk

di j ,
(20)

here i∗ denotes the index of the newly formed cluster {ci , c j },
while si , s j , and sk represent the sizes of clusters {ci }, {c j },
and {ck} respectively. A comprehensive breakdown of the
clustering method is offered in Algorithm 1. Lastly, it’s
important to note that the total number of iterations is equal
to |�(H)|−1, given that in each step, only two clusters merge
until a solitary cluster remains.

Algorithm 1 will generate a dendrogram with the height
of |�(H)|− 1. We apply an empirical strategy to truncate the
dendrogram for class clusters extraction, where the trunca-

tion threshold is set a hierarchy height of |�(H)|−1
2 . To ensure
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Algorithm 1 Fine-grained Class Clustering Algorithm

1: procedure Clustering (�(H), {μi |ci ∈ �(H)})
2: Initialize number of iterations: h ← |�(H)| − 1
3: Construct a set of clusters: 	(h) = {{ci }|ci ∈ �(H)}
4: Initialize cluster pairwise distance di j by (19)
5: while h > 0 do
6: Merge closest clusters i, j at 	(h) as cluster i∗
7: Update cluster set:

	(h−1) ← 	(h) ∪ {{ci , c j }}
\{{ci }, {c j }}

8: Compute the distance di∗k by (20)
9: h ← h − 1
10: end while
11: Return clustering result: {	(h)|h = 0, . . . , |�(H)| − 1}
12: end procedure

the class cluster extracted from dendrogram is semantically
explainable, we utilize the large language model (LLM),
specifically GPT (Brown et al., 2020) to generate the seman-
tic label of each cluster. We imply exclusive rules in cluster
labels to avoid ambiguities. In the prompt, we add the fol-
lowing instruction: “......ensuring the names are mutually
exclusive in semantics”. The specific prompt used to con-
struct cluster names for the class hierarchy of SensatUrban
dataset (Hu et al., 2021) is provided in the Appendix.

5 Experimental Studies

We present a comprehensive framework designed to man-
age the hierarchical PCSS. This framework, grounded in
MTN architecture, incorporates HC loss for hierarchical seg-
mentation and HEFM for point-wise embedding learning.
To appraise the effectiveness of our proposed framework,
we administer a series of rigorous experiments on seman-
tic segmentation within existing 3D scene-based datasets
with hierarchical annotations, including Campus3D (Li et
al., 2020) and ScanNet200 (Brown et al., 2020), as well as
hierarchical part segmentation on object-based PartNet (Mo
et al., 2019). Our results confirm that our methods enhance
the performance metrics of PCSS. Furthermore, to address
the scarcity of hierarchical datasets in 3D, we apply the
proposed hierarchy mining algorithm that autonomously
generates hierarchical annotations for datasets with single
fine-grained label annotations, namely, SensatUrban (Hu et
al., 2021). This generation methodology capitalizes on the
recent advancements in vision-language integration and large
languagemodels. To demonstrate its efficacy, we perform the
algorithm and execute a comprehensive analysis on single-
layer annotated point cloud datasets.

5.1 Experimental Setting

Network Architecture. In our experiments, we employ the
following architectures for point cloud segmentation: Sparse-
UNet (Graham et al., 2018), RandLANet (Hu et al., 2020),
PointNet++ (Qi et al., 2017b), MinkowskiUNet (Choy et
al., 2019), Point Transformer (PT) (Zhao et al., 2021), Point
TransformerV3 (PTv3) (Wu et al., 2024), and Swin3D (Yang
et al., 2023). Following the proposed paradigm in the origi-
nal works, Swin3D and PT are only implemented for indoor
scene segmentation, while RandLANet is only implemented
for outdoor scene. The implementation of all architectures
follow either the released code base (Contributors, 2023) or
their official implementations.

Hardware Configurations.We note that all experiments
are run on NVIDIA GeForce RTX 3090 GPUs and Linux
OS with Ubuntu 21.04 version, Intel(R) Xeon(R) Gold 6330
CPU.

Training Settings. For training on outdoor scene-based
datasets, specifically Campus3D and SensatUrban, we adopt
standard pipelinewith hyperparameters from (Li et al., 2020).
For training on indoor scene-based datasets and object-
based datasets, namely, ScanNet200 and PartNet, we follow
the settings including optimizer, scheduler, and data loader
in (Contributors, 2023) (PartNet follows the setting of the
common ShapeNet-Part dataset (Yi et al., 2016)), except for
the batch size adapted for our hardware memory.

Implementation Details. As specified in Sect. 4, we
implement an Multi-layer Perception (MLP) multi-head
configuration for MTN across each architecture. However,
we set an exception in SparseUNet (Graham et al., 2018)
where employing a Multi-decoder setup-leveraging multiple
decoder structures within UNet-yields superior performance
compared to MLP multi-heads, as demonstrated in Table 7.
We attribute this to the smaller dimensionality of point
embeddings in SparseUNet relative to point-based networks,
resulting in suboptimal MLP performance compared to
Multi-decoders. To maintain network generality and avoid
ad-hoc modifications, we adjusted only this network in
the following experiments while keeping the multi-head
approach for the others. Additionally, we pre-generate the
nearest indices for each point in point clouds before the
training to bypass the computational cost of neighbor search
induced by (16) in HFEM.

5.2 Evaluation Protocol

In linewith established PCSS studies (Xie et al., 2020;Guo et
al., 2020b), we utilize the Overall Accuracy (OA) and mean
Intersection Over Union (mIoU) across all classes as our
primary evaluation metrics. For each individual class, IoU
is determined using the formula TP

T+TP−P , where TP stands
for the number of true positive points, T represents the total
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ground truth points attributed to the respective class, and P
signifies the count of predicted positive points. Notably, we
evaluate OAs and mIoUs across multiple class layers present
in hierarchically annotated datasets. For amore detailed com-
parative analysis, we considermetrics derived from training a
network separately at each hierarchical level as a benchmark,
and we refer to this as the “multi-classifier” approach. The
disparity in performance between themulti-classifiermethod
and the HL offers insights into the impact of the HL. Addi-
tionally, to assess hierarchical coherence, we calculate the
coherence score as per Definition 4, and we extend the orig-
inal formulation of two layers to the case of H layers:

κθ1,...,θH (x) =
Ec(1)∼pθ1 (y|x),...,c(H)∼pθH (y|x)[1(c(1) � . . . c(H))],

where c(1), · · · , c(H) are classes in layers �(1), · · · , �(H),
respectively. Furthermore, we average the scores across all
samples and present the average value as the final coherence
score. The efficacy of the HL in 3D segmentation is further
elucidated by a combined analysis of these three performance
indicators across three distinct datasets.

To evaluate the quality of mined class hierarchy qual-
ity, we propose an indicator, class hierarchy mean opinion
score (CH-MOS), which is based on the widely used mean
opinion score (MOS) in the area of telecommunications
engineering and Quality of Experience (Viswanathan &
Viswanathan, 2005). The CH-MOS indicator consists of five
dimensions: intra-class similarity (IaCS), inter-class sep-
aration (IeCS), applicability (AP), and semantic validity
of cluster names (SVCN); and each dimension is rated by
the MOS with a scale of 1 to 5. The CH-MOS is the aver-
age score over these four dimensions. Detailed information
on these metrics is referred to in Section 3 of the Appendix.
Evaluation results are given at Sect. 5.4.1.

5.3 Results

5.3.1 Semantic Segmentation on Campus3D

The Campus3D dataset (Li et al., 2020) is the first pho-
togrammetry point cloud dataset specifically designed for
deep learning-based hierarchical segmentation. It contains 6
outdoor scenes, each consisting of nearly 100 million points,
with each point being hierarchically annotated with semantic
labels. This hierarchical annotation is ideally suited for our
proposed HL method. To alleviate the computational over-
head of processing the large scene and heavy label imbalance,
we reprocessed theCampus3Ddataset using themethod from
the SensatUrban (Hu et al., 2021). We divided it into 26
square areas, each measuring 200m × 200m, and allocated
these areas into training, validation, and testing sets at a ratio Ta
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Table 2 Average mIoU (mIoU-A) and OA (OA-A) across three levels
of Campus3D (Li et al., 2020)

Model mIoU-A OA-A

DGCNN (Wang et al., 2019b) 58.9 87.9

PCNN (Li et al., 2018) 58.1 86.4

PointNet++ (Qi et al., 2017b) 58.8 88.3

SparseUNet (Graham et al., 2018) 60.2 88.0

RandLANet (Hu et al., 2020) 54.8 85.7

PointTransformerV3 (Wu et al., 2024) 64.8 89.8

PointTransformerV3+HL (Ours) 66.7 91.4

Bold values indicate the best performance

of 20/3/3. Additionally, we merge the three least prevalent
labels in Campus3D into a “miscellaneous facility” category.
In the end,we apply 3 hierarchical levels applied in the exper-
iments. The detailed hierarchy is referred to in the Appendix.

The backbone models used here are: PointNet++ (Qi et
al., 2017b), RandLANet (Hu et al., 2020), SparseUNet (Gra-
ham et al., 2018), MinkowskiUNet (Choy et al., 2019), and
Point TransformerV3 (PTv3) (Wuet al., 2024). The results of
mIoU and OA for these five backbone models on the Cam-
pus3D dataset are presented in Table 1. Across nearly all
hierarchical levels and models, we observe consistent per-
formance gains when employing HL. The sole deviation
from this trend is with the multi-classifier variant of Point-
Net++ (i.e., PointNet++ without HL), which outperforms
its HL counterpart at the most coarse-grained level. This
can be attributed to the fact that PointNet++ is a network
with a simple structure, making it less suited for complex
tasks and limiting its representational capabilities. In HL,
when the three tasks are combined, the more challenging
fine-grained learning task can impede the learning of the
simpler coarse-grained task, resulting in limited enhance-
ment of PointNet++’s performance. However, the HL does
provide a significantly stronger boost for more complex net-
works like PTv3. This improvement is likely due to the
intrinsic relationships among hierarchical label layers, which
may offer supplementary geometric information beneficial
for semantic segmentation. This is visually demonstrated in
Fig. 6, where HL-equipped models effectively resolve cases
of geometric ambiguity-situations where geometrically sim-
ilar structures are semantically distinct, as discussed in (Li
et al., 2020). In contrast, models without HL struggle with
these challenges (Table 2).

5.3.2 Semantic Segmentation on ScanNet200

Besides outdoor dataset, we have also performed experi-
ments on indoor dataset ScanNet200 (Rozenberszki et al.,
2022) with label hierarchy. ScanNet200 is an extension of
the original ScanNet (Dai et al., 2017) dataset that signifi-

cantly expands semantic class annotations while maintaining
the original data split of 1201 training scans, 312 valida-
tion scans, and 100 test scans (1513 scans in total). The
dataset contains 200 semantic classes, representing an order
of magnitude increase from the original 20 classes. It was
derived from ScanNet’s raw semantic annotations, which
initially contained 607 categories. Furthermore, a label hier-
archy is provided by (Eigen & Fergus, 2015), which presents
a 13-class segmentation with intermediate categories; and a
fine-grained 40-class segmentation. The label hierarchy can
be mapped into ScanNet200, thus we can obtain a hierar-
chical segmentation dataset. Five backbone models are used
including SparseUNet (Graham et al., 2018), Minkowski-
UNet (Choy et al., 2019), Point Transformer (PT) (Zhao et
al., 2021), Point Transformer V3 (PTv3) (Wu et al., 2024),
and Swin3D (Yang et al., 2023). Experimental results are
given at Table 3. The results clearly demonstrate that the
proposed HL can successfully improve the performance.

5.3.3 Part Segmentation on PartNet-H

We conduct further experimentation with our architecture
on the task of hierarchical part segmentation. Our evalua-
tion is based on the recently proposed large-scale PartNet
dataset (Mo et al., 2019). PartNet comprises over 26,671 3D
models of 24 distinct object types including 573,585 anno-
tated part instances.

Our subsequent experiments concentrate on the three or
two levels of hierarchical semantic segmentation, encom-
passing 17 out of the total 24 object categories present in the
PartNet dataset. Moreover, to meet the label constraint of HL
in Lemma 3, we reprocess the label mapping in PartNet with
more details provided in the online supplementary material,
and refer the resulting dataset as “PartNet-H”.

Results of mIoU and OA for SparseUNet (Graham et al.,
2018) are given in Tables 4 and 5, respectively. ThemIoU and
OA are computed for each of the 17 part categories as well
as the average across three levels of segmentation: coarse-
(1), middle- (2), and fine-grained (3).

The results demonstrate that HL improves the average
mIoU across all 17 categories by approximately 1% to 2%.
Additional results for RandLANet and PointNet++ are given
in the Appendix.

5.4 Class Hierarchy Evaluation on SensatUrban-H

In this subsection, we evaluate the proposed HL approach
on another 3D dataset, SensatUrban (Hu et al., 2021). This
dataset is not originally annotated in a hierarchical manner.
To create a hierarchical structure, we employ our class hierar-
chyminingmethod (refer to Sect. 4.4), generating a two-level
class hierarchy, which is displayed by Fig. 7. The enhanced
dataset, which we denote as “SensatUrban-H”.

123



International Journal of Computer Vision

Table 3 Hierarchical semantic segmentation results on ScanNet200 (Rozenberszki et al., 2022) validation dataset. “(+)” and “(−)” stand for the
positive and negative gain of metrics by HL method

Model HL mIoU1 mIoU2 mIoU3 OA1 OA2 OA3

SparseUNet (Graham et al., 2018) w/o 73.6 52.2 24.3 84.9 83.3 79.7

w/ 74.9 (+1.3) 54.6 (+2.4) 25.1 (+0.8) 88.7 (+3.8) 83.5 (+0.2) 81.3 (+1.7)

MinkovskiUNet (Choy et al., 2019) w/o 65.8 50.0 19.1 85.9 82.0 79.0

w/ 70.7 (+4.9) 51.0 (+1.0) 21.3 (+2.2) 88.3 (+2.4) 82.6 (+0.6) 79.7 (+0.7)

Point Transformer (Zhao et al., 2021) w/o 72.7 53.0 23.7 88.5 83.4 80.8

w/ 73.9 (+1.2) 53.9 (+0.9) 24.1 (+0.4) 89.0 (+0.5) 83.9 (+0.5) 80.9 (+0.1)

Swin3D (Yang et al., 2023) w/o 74.2 54.9 24.1 86.1 81.8 81.3

w/ 75.6 (+1.4) 56.0 (+1.1) 24.6 (+0.5) 87.5 (+1.4) 84.6 (+2.8) 81.9 (+0.6)

PointTransformerV3 (Wu et al., 2024) w/o 74.1 58.5 27.1 88.4 85.1 81.7

w/ 76.6 (+2.5) 59.0 (+0.5) 27.8 (+0.7) 90.0 (+1.6) 85.4 (+0.3) 82.2 (+0.5)

Bold values indicate improvements by HL
The numerals 1, 2, and 3 correspond to the three hierarchical levels of segmentation granularity, denoting coarse-, middle-, and fine-grained
categories, respectively. This notation is consistent throughout all subsequent mentions

Fig. 6 Visualization of Campus3D (Li et al., 2020) semantic segmentation results. There are three groups of results and, in each group, raw pint
semantic labels (GT), results of MC and HL are provided, respectively, in coarse-grained (layer 1), middle-grained (layer 2), and fine-grained (layer
3) hierarchical layer

5.4.1 Mined Class Hierarchy Quality Evaluation

In this section, we apply CH-MOS to evaluate the qual-
ity of the mined class hierarchy. For the SensatUrban-H
dataset, 123 online questionnaires were distributed, and 105
responses were received. The CH-MOS values derived from
these responses are presented as a boxplot in Fig. 8a. To fur-
ther verify the effectiveness of the proposed class hierarchy
mining method, we applied it to the leaf node class labels of
the Campus3D dataset (Li et al., 2020), generated a class
hierarchy, and compared it with a customized three-level
hierarchy from the originally defined hierarchy (Original) as
well as randomly generated hierarchies. A total of 100 online
questionnaires were distributed, yielding 89 responses. The
CH-MOS values from these responses are shown in Fig. 8b.
Notably, all respondents were college students, including
both graduate and undergraduate participants.

FromFig. 8,we conclude that the proposed label hierarchy
mining method described in Sect. 4.4 performs effectively,
producing clusters that are explainable from the perspective
of human intelligence. Regarding the results for Campus3D,
we observe that the better performance of our method com-
pared to the original hierarchy is due to our hierarchy being
purely language-based and thus more comprehensible for
humans, whereas the original Campus3D hierarchy relies on
expert domain knowledge of CityGML. This characteristic
of CH-MOS reflects a potential bias of human reviewers,
emphasizing the explainability of our approach.

5.4.2 Semantic Segmentation Results for Mined Class
Hierarchy

Semantic segmentation results for SensatUrban-H are pre-
sented in Table 6. Aside from the OA of SparseUNet at the
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Fig. 7 Mined class hierarchy of SensatUrban-H. (NEG:Natural Ele-
ments & Ground, TE: Traffic Elements, CTI: Core Transport Infras-
tructure, UA: Urban Amenities)

coarse-grained level, HLhas led to significant improvements.
Most notably, in the fine-grained (level 2) segmentation task,
HL boosts the performance of RandLANet by over 15% in
terms of mIoU and around 9% in terms of OA.

5.5 Ablation Study

In order to thoroughly evaluate the impact of the CL and the
HEFM component, ablation studies were performed using
the Campus3D dataset. The outcomes of these studies are
illustrated in Fig. 9 and detailed in Table 7. The results lead
us to conclude that both CL loss and HEFM are pivotal
in enhancing the coherence performance, as measured by
the coherence score (κπ ), and the segmentation accuracy, as
indicated by the mIOU-A and OA-A. These results reveal

Fig. 9 κπ values for Campus3D results on validation and test set

that the CL loss, HEFM-TF, and HEFM-BA are all essential
for achieving the superior performance associated with the
HL. Furthermore, an analysis that combines the insights from
Fig. 9 with Tables 1 and 2 and indicates a positive correla-
tion between solution coherence and segmentation accuracy,
thereby corroborating the stated Theorem.

5.6 Computational Efficiency

The multi-head implementation in MTN introduces extra
parameters and computational overhead into the origi-
nal architecture. Moreover, the HEFM component which
includes: 1) top-aware fusion and 2) bottom-guided aggrega-
tion. The first does not involves high computational overhead
and has complexity of O((H−1)N ) for layer number H and
point number N ; as defined in equations (17) and ((18)), the
second requires similarity computation among the nearest
neighborhood points. The extra complexity is O((H−1)kN )

where k = |N | is the nearest neighborhood set size. This
extra computation effort is minor because (H − 1)k � N .
Furthermore, as mentioned in Sect. 4.3, we pre-generate the
neighbor indices before training thus avoid computation of
pair distance calculation. We note that many models includ-
ing PointNet++ and Point Transformer requires pair distance

Fig. 8 Boxplots of CH-MOS for Class Hierarchy of SensatUrban-H and Campus3D (Li et al., 2020)
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Table 6 Semantic segmentation results on SensatUrban-H dataset with
mined class hierarchy

Model HL mIoU1 mIoU2 OA1 OA2

SparseUNet w/o 50.9 51.3 86.0 85.0

w/ 52.1 52.4 85.7 85.1

RandLANet w/o 43.0 43.8 53.9 62.2

w/ 49.7 48.6 68.8 71.3

PointNet++ w/o 48.1 37.9 73.7 75.1

w/ 57.2 39.2 75.8 77.4

Bold values indicate improvements by HL
The numerals 1 and 2 correspond to the hierarchical levels of seg-
mentation granularity, representing coarse- and fine-grained categories,
respectively. SparseUNet: Graham et al. (2018); RandLANet:Hu et al.
(2020); PointNet++: Qi et al. (2017b)

Table 7 Ablation Study of Proposed HL Framework on Campus3D (Li
et al., 2020) with SparseUNet (Graham et al., 2018). For MTN setting,
original (Ori.), multi-head (MH) and multi-decoder (MD) are evaluated

MTN λ HEFM HEFM mIoU-A OA-A
Setting (TF) (BA)

Ori – – – 60.2 88.0

MH 0.1 � � 61.5 88.2

MD 0.01 � � 60.8 88.2

MD 0.1 – – 60.5 87.9

MD 0.1 � – 61.8 88.6

MD 0.1 – � 61.7 88.3

MD 0.1 � � 62.0 88.5

Bold values indicate the best performance
TF: Top-aware Fusion; BA: Bottom-guided Aggregation

calculation, thus the neighborhood query in HFEM will not
induce extra cost for these models.

The comprehensive results for computational efficiency
are provided in Table 8. It demonstrates that less than 25%
of training time and neglectable proportion of parameters
are induced by the HL method for multi-head versions of
SparseUNet and PointNet++. However, the multi-decoder
implementation of SparseUNet will introduce more parame-
ters although it reaches better performance. Overall, the HL
method can still improve the plain model with minor extra
computation, since the computation overhead and time com-
plexity will be H times of original model in the conventional
multiple classifiers setting for H layers.

6 Conclusion

In the rapidly evolving landscape of computer vision, under-
standing and harnessing the inherent hierarchy of 3D objects
and scenes is paramount. Through our work, we have empha-
sized the pivotal role ofmaintaining coherence across various

Table 8 Computational cost of proposed HL framework on Campus3D
(Li et al., 2020) with SparseUNet (Graham et al., 2018) and PointTrans-
formerv3 (Wu et al., 2024) (PTv3). For MTN setting, original (Ori.),
multi-head (MH) and multi-decoder (MD) are evaluated. The number
of network parameters and relative average run time per batch w.r.t
original implementation are reported

Model MTN HEFM HEFM # of Relative
Setting (TF) (BA) Params Time

Ori – – 39.2M 1.00

MH – – 39.3M 1.23

Sparse– MD – – 55.6M 1.30

UNet MD � – 55.7M 1.30

MD – � 55.6M 1.31

MD � � 55.7M 1.31

Ori – – 1.0M 1.00

MH – – 1.1M 1.10

PointNet++ MH � – 1.2M 1.10

MH – � 1.1M 1.12

MH � � 1.2M 1.12

TF: Top-aware Fusion; BA: Bottom-guided Aggregation

hierarchical levels during 3D segmentation. By grounding
hierarchical learning in a probabilistic context and introduc-
ing an innovative aggregation matrix, we have illuminated
the intricate relationships that permeate through hierarchi-
cal structures. Our deep learning architecture, complemented
by the hierarchical embedding learning module, signifies a
significant step forward in this domain. Furthermore, the inte-
gration of a LargeLanguageModel and clustering techniques
to derive a hierarchical structure for detailed 3D segmen-
tation underscores our commitment to harnessing the best
of both the textual and visual worlds. The promising results
from our experiments reinforce the potential of our approach,
paving the way for future research and applications in this
area. We encourage the academic and industrial community
to delve into our publicly available source code and continue
this exploration, aiming for even more refined solutions in
the realm of 3D computer vision.

Appendix A Proof of Lemma 3

In order to prove Lemma 3, we first prove the following
Lemma.

Lemma 4 Given predictions of two layersπθ andπθ ′ for one
sample x, namely πθ = [pθ (c1|x), · · · , pθ (cm |x)]
 and
πθ ′ = [pθ ′(c′

1|x), · · · , pθ ′(c′
m′ |x)]
 defined on� = {ci }mi=1

and �′ = {c′
j }m

′
j=1 with the relationship �′ � �, if

κθ,θ ′(x) = 1,
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then pθ (ci |x) = ∑m′
j=1 1(c′

j � ci )pθ ′(c′
j |x) holds for every

i and pθ (·|x) is a deterministic distribution.

Proof. the coherent score is represented by a joint proba-
bility format given by

κθ,θ ′(x) =
m∑
i=1

m′∑
j=1

1(c′
j � ci )Pr(y = ci , y

′ = c′
j |x), (A1)

Since pθ (y|x) and pθ ′(y′|x) are conditional independent
when x is given,

κθ,θ ′(x) =
m∑
i=1

∑
c′
j�ci

pθ (y = ci |x)pθ ′(y′ = c′
j |x)

=
m∑
i=1

pθ (y = ci |x)
∑
c′
j�ci

pθ ′(y′ = c′
j |x), (A2)

let π̂ ′
i = ∑

c′
j�ci pθ ′(y′ = c′

j |x) and πi = pθ (y = ci |x) for

i = 1, · · · ,m, we have

κθ,θ ′(x) =
m∑
i=1

πi π̂
′
i . (A3)

We note that
∑m

i=1 π ′
i = 1 and π ′

i � 0 hold for every i since
the definition of pθ ′ and �′. Intuitively, the largest value of
κθ,θ ′ in (A3) is 1 since the probabilistic property of πθ and
πθ ′ . In the following, we formally derive this conclusion
and the necessary conditions of κθ,θ ′ = 1 by formulating an
optimization problem based on (A3).

We suppose the optimal value of the following problem

min
π ,π ′ − π
π ′ (A4)

s.t. 1
π = 1, (A5)

1
π ′ = 1, (A6)

πi � 0, i = 1, · · · ,m, (A7)

π ′
j � 0, j = 1, · · · ,m, (A8)

where |π | = |π ′| = m. Note that π and π ′ are exactly two
probability distributions when the constraints hold. To solve
the problem, we define the Lagrange function of the above
problem as

− π
π ′ + λ1
π + λ′1
π ′ + μ
π + μ′
π ′. (A9)

Based on the function, we consider the necessary Karush-
Kuhn-Tucker (KKT) conditions of the optimal variables π ′∗,
π∗ based on the problem:

− π ′∗ + λ1 = −μ (A10)

− π∗ + λ′1 = −μ′ (A11)

μiπ
∗
i = 0, i = 1, · · · ,m, (A12)

μ′
jπ

′∗
j = 0, j = 1, · · · ,m, (A13)

μi � 0, i = 1, · · · ,m, (A14)

μ′
j � 0, j = 1, · · · ,m, (A15)

and the original constraints. Considering I = {i =
1, · · · ,m | π∗

i = 0} and J = { j = 1, · · · ,m | π ′∗
j = 0}, we

have the following equations to make the KKT conditions
hold,

|I | < m, |J | < m, (A16)

π∗
i = λ′ > 0, μi = 0 ,∀i /∈ I , (A17)

μi = −λ′,∀i ∈ J , (A18)

π ′∗
j = λ > 0, μ′

j = 0 ,∀ j /∈ J , (A19)

μ′
j = −λ,∀ j ∈ I (A20)

The above equations result in I = J , and so, λ′ = λ =
1/(m − |I |). The original optimization becomes,

min
m∗ − 1

m∗2 s.t. m′ ∈ {1, · · · ,m}, (A21)

where m∗ = m − |I |. The minimum value of the objective
is -1 when m∗ = 1, i.e., |I | = m − 1. Therefore, π∗ = π ′∗
are the same vectors where one element is 1 and the rest of
elements are 0.

As a result, when κθ,θ ′(x) in euqation (A3) reaches the
maximum vlaue 1, we have πi = π̂ ′

i thus pθ (ci |x) =∑m∗
j=1 1(c′

j � ci )pθ ′(c′
j |x) holds for every i . Moreover,

pθ (·|x) is deterministic since the probability of a class is
1.

Proof of Lemma 2 When the two predictors pθ and pθ ′ are
hierarchically coherent, because of the theoretical result in
Lemma 3:

∑
c′
q�cp

pθ ′(c′
q |x) = pθ (cp|x), (A22)

we have the fact that pθ ′(c′
q |x) = 1 implies pθ (cp|x) = 1

when c′
q � cp. In addition, the statement that pθ (cp|x) = 0

implies pθ ′(c′
q |x) = 0 when c′

q � cp also holds.

Appendix B Proof of the Theorem

Proof Suppose we have � = {cp}mp=1 and �′ = {c′
q}m′

q=1
as two class layers, and C is the super-class layer of C′. We
assume�′ � �. Furthermore, letπθ (x) andπ θ ′(x) stand for
two predictions, pθ (y|x) and pθ ′(y′|x), for a given sample
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x. Therefore, the coherent score is represented by a joint
probability format given by

κθ,θ ′(x) =
m∑
p=1

m′∑
q=1

1(c′
q � cp)Pr(y = cp, y

′ = c′
q |x).

(B23)

Since pθ (y|x) and pθ ′(y′|x) are conditional independent
when x is given, we have,

κθ1,θ2(x) =
m∑
p=1

∑
c′
q�cp

(y = cp|x)pθ ′(y′ = c′
q |x)

=
m∑
p=1

pθ (y = cp|x)
∑

c′
q�cp

pθ ′(y′ = c′
q |x)

=
m∑
p=1

p2θ (y = cp|x), (B24)

when the equation

pθ (y = cp|x) =
m′∑
q=1

1(c′
q � cp)pθ ′(y′ = c′

q |x), (B25)

is satisfied. We note that equation (B25) can be obtained
by |πθ (x) − Aπθ ′(x)| = 0 for A being the aggrega-
tion matrix between two class layers. Subsequently, since∑m

p=1 p
2
θ (y = cp|x) in equation (B24) is a Schur-convex

function of pθ (y|x) (Peajcariaac & Tong, 1992; Zhang,
1998), we have the conclusion that it decreases monotoni-
cally with the information entropy given by

Hθ (y|x) =
∑
y∈�

pθ (y|x) log pθ (y|x) (B26)

= πθ (x)
 logπθ (x). (B27)

Thus, Hθ (y|x) → 0 implies
∑m

p=1 p
2
θ (y = cp|x) → 1,

which leads to κθ1,θ2(x) → 1 when |πθ (x) − Aπθ ′(x)| = 0
holds.
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