Pyramid Diffusion for Fine 3D Large Scene
Generation - Supplementary Material

This supplementary document details our evaluation setup, hyperparameters
setting, data pre-processing, and more experimental results. The supplementary
material is organized as follows:

— Evaluation Setup in Section A.

— Hyperparameters Setting in Section B.

— Data Pre-processing in Section C.

— Additional Experimental Results in Section D.
— Additional Discussion in Section E.

A Evaluation Setup

In all evaluations of our paper, we consistently randomly sample 1,000 dis-
tinct scenes to assess the generation quality. The specific methodologies for F3D
(Fréchet 3D Distance) and MMD (Maximum Mean Discrepancy) are as follows.

A.1 F3D

It is an evaluation metric adapted from the 2D Fréchet Inception Distance
(FID) [5] to evaluate the quality of generated 3D scenes. Implementing F3D
aims to complement semantic segmentation by capturing the richness and di-
versity of generated scenes, which semantic segmentation might overlook. F3D
ensures that the generated scenes maintain complexity and reflect the similarity
between generated 3D scenes and real-world structures.

Our F3D is calculated following the next steps. Initially, we pre-train a
3D CNN-based autoencoder, which is subsequently utilized to extract high-
dimensional features from the generated 3D scenes. The F3D is then computed
akin to FID, leveraging the extracted features to evaluate the discrepancies be-
tween the generated and real scenes. Mathematically, F3D is represented as:

F3D = ||y — g1, | + Tr (B, + 2, - 2(2,3,)"/?) (1)
where g, p, are the feature means, and ¥,, X, are the feature covariances of
the generated and real scenes.

A.2 MMD

We incorporate the Maximum Mean Discrepancy (MMD) as a key statistical
measure to quantify the disparity between the distributions of generated and
real-world scenes. Following a method akin to our F3D approach, we initially
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extract high-dimensional features from the 3D scenes using a 3D CNN architec-
ture which is used in F3D. Subsequently, we employ a Gaussian kernel, expressed

as o

where o is the kernel width to map these features into a higher-dimensional
space for MMD calculation. The bandwidth ¢ is determined using the median
heuristic, a robust method to estimate the scale of data in the feature space.
The MMD formula is given by

k(f, f') = exp <

2
n

MMD? = %Zk(fi,-)—%Zk(f;,-) (3)
j=1

i=1

f and f’ are the extracted features from the generated and real dataset, respec-
tively. The utilization of MMD, especially with the Gaussian kernel, not only
captures the overall statistical distribution but also considers finer details in the
feature space, rendering it an indispensable tool in our evaluation protocol.

B Hyperparameters Setting

B.1 Pyramid Discrete Diffusion Models

Training Hyperparameters. In the main experiment of our Pyramid Discrete
Diffusion, a total of four diffusion models, namely PDD (s;), PDD (s3), PDD
(s3), and PDD (s4), are utilized. Each model is trained on four NVIDIA A100
GPUs with batch sizes set to 128, 32, 16, and 8, respectively. A unified learning
rate of 1073 is applied and the AdamW optimizer is used to train each model
for 800 epochs. Additionally, during training, data augmentation techniques,
including flipping and rotation, are employed to enhance the robustness of the
models.

Cross-dataset Hyperparameters. In our paper, we demonstrate the capa-
bility of our method for cross-dataset generation. The models labeled with FT
are those where the generation model trains on the CarlaSC dataset [12] and
undergoes finetuning using the SemanticKITTT dataset [2]. Specifically, we use
the PDD (s4) model for finetuning, which has already been trained for 800
epochs on CarlaSC. This model is then further trained for 200 epochs using the
SemanticKITTI dataset, with all other hyperparameters remaining unchanged.
Consequently, the entire model completes a total of 1,000 epochs of training.
Sampling Hyperparameters. In our paper, all the sampled scenes we demon-
strate are generated using 100 diffusion steps.

B.2 Evaluation Models

We train six different models across three distinct networks in our evaluation
process. These include 3D CNNs for evaluating Fréchet 3D Distance (F3D) and
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Maximum Mean Discrepancy (MMD), SparseUNet [4], and PointNet++ [10] for
semantic segmentation evaluation.

3D CNN Hyperparameters. As mentioned in Section A of our paper, the
evaluation of F3D and MMD relies on a well-trained 3D CNN network. We train
two separate 3D CNNs for the CarlaSC and SemanticKITTI datasets to per-
form their respective F3D and MMD evaluations but maintain identical training
parameters for both networks. The 3D CNNs are trained as an autoencoder,
with the primary aim of feature extraction. The loss function employed in this
training is a balanced cross-entropy, a form of reconstruction loss. We set the
batch size to 16 and employed SGD as the optimizer with a cosine scheduler.
The networks are trained for 30 epochs at a 1072 learning rate. We adhere to
the original dataset splits for training, using the training sets as delineated in
the original dataset distributions.

SparseUNet Hyperparameters. SparseUNet [4], designed for voxel-based
semantic segmentation, is trained with two separate models for the CarlaSC and
SemanticKITTI datasets. All training parameters of these SparseUNet models
are consistent with those of the 3D CNNs. This includes a batch size 16, utilizing
SGD as the optimizer, employing a cosine scheduler, and training for 30 epochs
at a learning rate of 1072, The training adheres to the original dataset divisions
for the respective training sets.

PointNet++ Hyperparameters. Similarly to our previous approach, we train
a separate semantic segmentation model based on PointNet++ (SSG) for each
dataset. Each model is trained with a batch size of 16. We randomly sample
16,384 points for each scene, and if the number of points is insufficient, we
supplement them by replication. We set the optimizer to Adam and use a step
scheduler with a step size 5. The models are trained for 30 epochs at a learning
rate of 5 x 1073,

B.3 Baseline

Unconditional Generation. In our paper’s unconditional generation compar-
ison experiments, we include two baseline models: the Discrete Diffusion model
(DD) [1] and the Latent Diffusion model [7]. For the DD, following the de-
scriptions in [7], we train generation models with a scale of 256 x 256 x 16 for
both the CarlaSC and SemanticKITTI datasets. Regarding the Latent Diffusion
model, we utilize the pre-trained model published in the work [7] as our baseline.
However, since the original work trains the model at a scale of 128 x 128 x 8,
during the generation phase, we use the Scale Adaptive Function to upsample
the generated scenes to match our scale of 256 x 256 x 16.
Conditional Generation. In our paper’s conditional generation experiment
sections, we use a discrete diffusion model conditioned on point clouds as our
baseline. The scene is divided into a voxel-based representation based on scale,
and each voxel is assigned a binary value (0 or 1). A voxel is set to 1, indicating
the presence of points if it contains one or more points from the point cloud.
We recognize that this comparison might not be entirely fair due to scale
differences. However, the final upscaling and subsequent visualization of the gen-
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Table a: Simplified Semantic Labels for the CarlaSC Dataset After Merging.
The table lists the 10 consolidated classes used in our experiments, with 0 denoting
unclassified elements not shown here.

Index Label ‘Index Label

1 Building 6 Road

2 Fences 7 Ground

3 Other 8 Sidewalk
4  Pedestrian| 9  Vegetation
5 Pole 10 Vehicle

erated scenes allow for a clear discernment of quality differences. It’s important
to note that training in the original method at the larger scale of 256 x 256 x 16
would require substantial computational resources, specifically over 16 days on
4 A100 GPUs. Despite this potential bias, the visual evaluation method, after
upscaling, effectively demonstrates the quality distinction between the generated
scenes, which is crucial for our evaluation. This approach is chosen as the most
feasible solution given our resource constraints.

C Datasets Pre-processing

Our paper’s experiments utilize two outdoor scene datasets: CarlaSC [12] and
SemanticKITTI [2]. CarlaSC is a dataset collected through simulated road scenes
and is primarily used in our main experiments. On the other hand, SemanticKITTTI,
gathered from real-world scenes, is employed in experiments focusing on cross-
dataset applications. Due to the different origins of these datasets and their
varied labels, we undertake specific processing steps to facilitate better experi-
mentation. The details of these processing steps are as follows.

C.1 CarlaSC

CarlaSC [12], primarily employed in our main experiments, is a synthetic dataset
featuring outdoor road point cloud scenes. Originally comprising 23 semantic
labels, these merge according to the dataset’s official guidelines to simplify the
categorization process. The dataset encompasses 11 semantic classes, as detailed
in Table a, with 0 representing the unclassified category. This dataset includes
18 scenes for training, 3 for validation, and 3 for testing. In our experiments, we
utilize a high-scale version of CarlaSC, where each scene has a scale of 256 x
256 x 16 voxels, covering a physical space of 25.6 meters both in front of and
behind the radar scanner and extending up to a height of 3 meters.

C.2 SemanticKITTI

SemanticKITTI [2], utilized for cross-dataset validation, showcases diverse envi-
ronments, including inner-city traffic, residential areas, highways, and country-
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Table b: Conversion of SemanticKITTI Labels to Correspond with CarlaSC’s 11 Cat-
egories. Labels listed as remove are absent in CarlaSC, while those marked with - are
omitted from semantic segmentation according to the original settings.

Index Original Labels Mapped index Mapped Labels  Ratio ‘Index Original Labels Mapped index Mapped Labels  Ratio

0 unlabeled 0 Unclassified 1.8 x 10~ 2| 51 fence 2 fence 7x 10"
1 outlier - - 2x107% | 52 other-structure 3 other 2x107°%
10 car 10 vehicle 4.1 x 1072| 60 lane-marking 6 road 4x107°
11 bicycle remove - 1x107% | 70 vegetation 9 vegetation 2.6 x 107!
13 bus remove - 3x107° | 71 trunk 9 vegetation 6 x 107
15 motorcycle remove - 3x 1074 72 terrain 7 ground 8x 1072
16 on-rails remove - 0 80 pole 5 pole 3x 1073
18 truck remove - 2x 1073 81 traffic-sign 5 pole 6x 104
20  other-vehicle remove - 2x 1072 | 99 other-object 3 other 1x10°2
30 person 4 pedestrian 2 x 10~* | 252 moving-car - - 2x10°%
31 bicyclist remove - 1x107% | 253  moving-bicyclist - - 1x10°%
32 motorcyclist remove = 5x107% | 254 moving-person - B 2x 107
40 road 6 road 2 x 10! | 255 moving-motorcyclist - - 3x107°
44 parking 7 ground 1.5 x 1072 256 moving-on-rails - - 0

48 sidewalk 8 sidewalk 1.4 x 107 | 257 moving-bus - - 1x 107
49 other-ground 7 ground 4x107°% | 258 moving-truck - - 1x107%
50 building 1 building 1.3 x 1071| 259 moving-other - - 4%x107°

side roads. After voxelization, it comprises 22 sequences: sequences 00 to 10 (ex-
cluding 08) for training, 08 for validation, and 11 to 20 for testing. However, due
to the absence of semantic labels for the test set in the official SemanticKITTI
release, our assessment of scene generation depends on the validation set. The
chosen scope extends 51.2 meters ahead of the vehicle, 25.6 meters laterally, and
6.4 meters in height, yielding a voxel scale of 256 x 256 x 32. Originally featuring
28 categories, SemanticKITTI undergoes a class remapping or removal process
to align with the 11 categories found in CarlaSC, detailed in Table b.

In this alignment, we have removed certain categories from SemanticKITTI.
This decision is primarily based on the original dataset’s configuration for se-
mantic segmentation, such as moving objects, and the absence of corresponding
labels in the CarlaSC dataset, like bicycles and motorcycles. Notably, the re-
moved categories represent only a minor portion of the total number of labels.
This ensures the labels conform to the relationships in Table a. Additionally, we
omit the upper 16 voxels in height from SemanticKITTI to synchronize with Car-
1laSC’s height representation, a decision justified by the rarity of objects above
this limit and the need for consistency in dataset comparison.

D Additional Experiment Results

Due to the limitations on the length of the main text, we have reserved the
primary experimental results for inclusion in the main body of the paper. In this
section, we provide supplementary experimental outcomes not mentioned in the
main text and more showcases of our visualization effects.

D.1 Generation Quality

In this section, we present an array of qualitative comparative results. Figures a
and ¢ showcase the outcomes of our Unconditional Generation, from which we
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can discern that scenes generated using the PDD method achieve greater seman-
tic accuracy and encompass more details within the generated scenes. Figures d
and b illustrate the results of our Conditional Generation. The outcomes reveal
that the scenes generated by our conditional generation method closely resemble
the ground truth. In contrast, while the approach using point clouds as a con-
dition for scene restoration maintains structural similarity, it exhibits numerous
inaccuracies in label correctness.

D.2 Applications

Our PDD method extends to two applications: cross-dataset and infinite scene
generation. Figures e, g, f and h provide additional visualizations of cross-dataset
scene generation on the SemanticKITTI dataset. Specifically, Figure e and g
illustrate the distinctions in generation effects between DD and our method.
Our method consistently generates more coherent semantic scenes, encompassing
a wider range of objects and richer details. For Figure f and h, we initially
downsample the ground truth to 64 x 64 x 8 and then restore it to 256 x 256 x 16.
These results demonstrate our method’s capability to reconstruct scenes closely
aligned with the ground truth accurately.

Additionally, Figure i demonstrates the capability of our method to generate
infinite scenes. Overall, the scenes generated by our method show high diversity
with minimal repetition. We note certain artifacts, such as road interruptions,
which can be attributed to two main factors. First, our approach, in line with
prior works [8], assumes a local dependency for infinite scene generation (see
Equation 6 in the paper). Though efficient, this approach may result in artifacts
due to its tendency to overlook long-range dependencies. This could be addressed
by sequential models like transformers, which is beyond the scope of this paper.
Furthermore, the training dataset [2,12] consists of radar-scanned road segments
rather than complete regional scenes, which potentially causes artifacts. The
extrapolation beyond the scanned scene segments poses a significant challenge,
resulting in disruptions within the generated infinite scenes. We anticipate that,
with enhanced datasets and the incorporation of sequential models, our method
has the potential to generate better infinite 3D scenes.

D.3 Ablation Study

Pyramid Diffusion. Due to space constraints, only a subset of experimental
results are provided in Table 3. We now present the full experimental outcomes
in Table c. The full results show that the performance for both conditional and
unconditional generation improves incrementally with adding scales. However,
within the four-scale pyramid, the increase is only marginal.

E Additional Discussion

Differences from 2D Approaches. While inspired by coarse-to-fine approaches
in 2D image processing [6,9, 11], directly applying them to 3D presents signifi-
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Table c: Complete comparison of different diffusion pyramids on 3D semantic scene
generation.

Cascaded Condition mIoU(V) MA(V) mloU(P) MA(P) F3D(|) MMD(])
S4 X 40.0 63.7 25.5 38.7 1.36 0.60
S1 — S4 X 67.0 85.4 32.1 51.3 0.32 0.24
S1 — S2 — S4 X 68.0 85.7 33.9 52.1 0.32 0.20
S1 — S2 — S3 — Sa X 68.0 85.6 33.4 52.0 0.32 0.23
S1 — S4 v 52.5 77.2 27.9 43.1 0.36 0.28
S1 — S2 — S4 v 55.8 78.7 29.8 46.6 0.34 0.27
S1 — S2 — S3 — Sa v 55.9 79.5 29.6 45.8 0.34 0.28

cant challenges due to the added dimension, resulting in more complex data and
increased computational demands. Furthermore, we focus on generating large-
scale outdoor 3D scenes rather than the more prevalent generation of individual
3D objects. Outdoor scenes imply a higher level of diversity, comprising nu-
merous objects, all of which require semantic coherence within the generated
environments.

Another consideration is the relative scarcity of high-quality 3D datasets com-
pared to the more mature field of 2D images. These constraints pose challenges
for diffusion models in scene generation. To address this, we adopt a multi-scale
approach. Initially, diffusion models train efficiently on small-scale data, ensuring
diverse and semantically accurate scene generation. We then employ conditional
generation techniques to refine the scenes progressively. Diffusion models excel
under conditions’ guidance, allowing for high-quality scene generation.

The flexibility offered by our pyramid approach ensures the diversity and
quality of the generated scenes and facilitates cross-dataset generation. Addi-
tionally, the concept of our proposed Scene Subdivision Module aids in the re-
alization of infinite scene generation, allowing for the seamless stitching and
extension of scenes beyond fixed boundaries.

In conclusion, by tailoring the diffusion process to the unique demands of
3D data and leveraging conditional inputs for refinement, our method effectively
bridges the gap between 2D inspiration and 3D application, unlocking new pos-
sibilities in scene generation with efficiency and adaptability.

Limitations. Despite the notable advantages of our method in both uncon-
ditional and conditional generation compared to other methods, as well as its
extension to cross-dataset and infinite scene generation, it is subject to limita-
tions primarily stemming from the scale and collecting methods of the current
outdoor 3D scene datasets [2,3, 12]. Consequently, the scenes generated by our
method are constrained to the largest scale of 256 X256 x 16, although our method
possesses the theoretical capability to generate larger scale. Additionally, incom-
plete object generation may occur in the generated scenes. Despite our efforts
to mitigate this limitation through infinite scene generation, the quality of the
generated results is still influenced by the characteristics of the training dataset.
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Fig. a: Additional visualization of unconditional generation results on Car-
1laSC. Our method produces more diverse scenes compared to the two baseline mod-
els [1,7].

Ground Truth

DiscreteDiff (PC)

P - DiscreteDiff (s,)

P - DiscreteDiff (s3)

Fig.b: Additional visualization of conditional generation results on Car-
laSC. PC stands for point cloud condition.
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Fig. c: Additional visualization of unconditional generation results on Car-
1laSC. Our method produces more diverse scenes compared to the two baseline mod-
els [1,7].

Ground Truth

DiscreteDiff (PC)

P - DiscreteDiff (s,)

P - DiscreteDiff (s)

Fig.d: Additional visualization of conditional generation results on Car-
laSC. PC stands for point cloud condition.



10 Y. Liu et al.

DisDiff

P - DisDIff (s)
>
*

B
Fig.e: Additional SemanticKITTI
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for finetuning pre-trained model from
CarlaSC.
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Fig.g: Additional SemanticKITTI
unconditional generation. F'T stands
for finetuning pre-trained model from
CarlaSC.

Ground Truth

Down Sampled (s;)
/

FT-P-DisDiff (s;) P - DiscDiff (s,)

Fig.f: Additional SemanticKITTI
conditional generation. Our proposed
PDD achieves results close to the
groundtruth. Note that FT stands for
finetuning from CarlaSC models.

Ground Truth

Down Sampled (s,)

FT-P-DisDiff (s,) P - DiscDiff (s,)

Fig. h: Additional SemanticKITTI
conditional generation. Our proposed
PDD achieves results close to the
groundtruth. Note that FT stands for
finetuning from CarlaSC models.
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Fig. i: Infinite Scene Generation. Using PDD, we generate three different scenes.
Our method produces infinite and consistent urban landscapes, seamlessly blending
diverse urban elements to create a coherent and realistic cityscape.
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