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Figure 1. We present Pyramid Discrete Diffusion Model, a method that progresses from generating coarse- to fine-grained scenes, mirroring
the top-down sequence of the pyramid structure shown. The model is extended for cross-dataset and infinite scene generation, with detailed
scene intricacies illustrated on the flanking sides of the image. Ds and Dt refer to a source dataset and a target dataset, respectively.

Abstract

In this paper, we aim to apply the popular diffusion
model for large 3D scene generation. Directly transferring
the 2D techniques to 3D scene generation is challenging
due to significant resolution reduction and the scarcity of
comprehensive real-world 3D scene datasets. To address
these issues, our work introduces the Pyramid Discrete Dif-
fusion model (PDD) for 3D scene generation. This novel
approach employs a multi-scale model capable of progres-
sively generating high-quality 3D scenes from coarse to
fine. In this way, the PDD can generate high-quality scenes
within limited resource constraints and does not require ad-
ditional data sources. To the best of our knowledge, we are
the first to adopt the simple but effective coarse-to-fine strat-
egy for 3D large scene generation. Our experiments, cov-
ering both unconditional and conditional generation, have
yielded impressive results, showcasing the model’s effec-
tiveness and robustness in generating realistic and detailed
3D scenes. Our code will be available to the public.

*corresponding author.

1. Introduction

In recent years, generative models have seen significant ad-
vancements in both 2D and 3D fields, primarily driven by
the evolution of diffusion model techniques [4, 11, 21, 48].
While those generation tasks have made impressive visual
effects, 3D large scene generation task stands out for its vast
applicability in various cutting-edge applications such as
autonomous driving [24, 43, 45], virtual reality [31, 33, 40],
and robotic manipulation [9, 18, 47].

Although the diffusion model has benefited 2D high-
quality image synthesis by latent design [34, 37] or multi-
scale features [36, 38], transferring those techniques to 3D
scene generation presents significant challenges due to two
reasons. The first is the significant resolution reduction. For
example, a diffusion model can handle 512×512 resolution
in 2D but can generate only 128 × 128 × 16 in 3D scenes.
On the other hand, the scarcity of comprehensive real-world
3D scene datasets is insufficient for training robust diffusion
models that should require a large number of data.

To tackle the challenges associated with low-resolution
training in diffusion processes, several methods introduce
auxiliary signals for guidance that include employing Scene



Graphs as outlined in [42], using classifier guidance as per
[53], and integrating 2D maps as demonstrated in [30]. Al-
beit these techniques can remedy the lost high-resolution
information by other signals, they tend to depend on extra
data sources, accelerating the scarcity of collected 3D data.

Inspired by the coarse-to-fine pipeline widely used in
image resolution [15, 32, 39], we introduce the Pyramid
Discrete Diffusion model (PDD) for 3D scene generation.
Specifically, PDD has several multi-scale models capable
of progressively generating high-quality 3D scenes starting
from more minor scales. Albeit simple, this innovative ap-
proach has been severely explored before. To the best of our
knowledge, we are the first to extend the coarse-to-fine dif-
fusion to 3D semantic scenes and incorporate a scene subdi-
vision method with three advantages. At first, it enables the
generation of high-quality scenes within limited resource
constraints and facilitates the gradual refinement of scenes
from coarse to high-resolution without the need for addi-
tional data sources. Secondly, PDD’s structural flexibility
yields impressive results in cross-data transfer applications
using the SemanticKITTI dataset, significantly outperform-
ing baseline models. Thirdly, PDD holds the potential to
generate infinite outdoor scenes, demonstrating its scalabil-
ity and adaptability in varied environmental contexts.

The main contributions of this work are as follows:
• We conduct extensive experiments on 3D diffusion across

various pyramid scales, successfully demonstrating the
generation of high-quality scenes with decent computa-
tional resources.

• We introduce and elaborate on metrics for evaluating the
quality of 3D scene generation. These metrics are versa-
tile and applicable across multiple 3D scene datasets.

• Our proposed method showcases broader applications,
enabling the generation of scenes from synthetic datasets
to real-world data. Furthermore, our approach can be ex-
tended to facilitate the creation of infinite scenes.

2. Related Work
Diffusion Models for 2D Images. Recent advancements
in the generative model have seen the diffusion models
[15, 32, 39] rise to prominence, especially in applications in
2D image creation [10, 36, 37]. In order to generate high-
fidelity images via diffusion models, a multi-stage diffusion
process is proposed and employed as per [16, 17, 38]. This
process starts with the generation of a coarse-resolution im-
age using an initial diffusion model. Subsequently, a sec-
ond diffusion model takes this initial output as input, refin-
ing it into a finer-resolution image. These cascaded diffu-
sions can be iteratively applied to achieve the desired image
resolution. We note that the generation of fine-grained 3D
data presents more challenges than 2D due to the addition
of an extra dimension. Consequently, our work is moti-
vated by the aforementioned multistage 2D approaches to

explore their applicability in 3D contexts. Furthermore, we
aim to leverage the advantages of this structure to address
the scarcity of datasets in 3D scenes.

Diffusion Models for 3D Generation. In current practice,
the majority of 3D generative models primarily focus on 3D
point clouds, as 3D point clouds are more straightforward.
It has been widely used in various computer vision applica-
tions such as digital human [29, 41, 50], autonomous driv-
ing [23], and 3D scene reconstruction [19]. Point clouds
generation aims to synthesize a 3D point clouds from a ran-
dom noise [6, 7], or scanned lidar points [20]. Though the
memory efficiency of point clouds is a valuable property, it
poses high challenges in the task of point cloud generation.
Existing works largely focus on using Generative Adversar-
ial Networks (GANs), Variational Autoencoders (VAEs), or
Vector Quantized Variational Autoencoders (VQ-VAEs) as
the backbone for this task [1, 6, 7]. However, these models
have limited capacity for high-fidelity generation and are
notoriously known for unstable training. As an alternative
to the generative models discussed above, diffusion models
have revolutionized the computer vision community with
their impressive performance in 2D image generation [36–
38]. Yet, applying diffusion models for 3D data generation
has not been thoroughly explored hitherto. Point-Voxel Dif-
fusion [51] proposes to generate a raw point cloud through
the diffusion process while LION [49] and DPM [28] use
the latent representation of a point cloud during the denois-
ing process. However, all these methods focus on object-
level point clouds and cannot be naively extended to scene-
level point clouds. Most relevant to our work is [20], where
a diffusion model is trained on a scene-level point cloud
dataset for the synthesis task. However, due to the capac-
ity limitation of diffusion models, generating a scene-level
point cloud with a single diffusion model leads to unsatis-
fying results, such as undesired wholes or the lack of fine-
grained objects. In this work, we propose a pyramid dis-
crete diffusion model that largely reduces the difficulty at
each pyramid level, thus producing scene point clouds with
more realistic and fine-grained details.

3D Large-scale Scene Generation. Generating large-scale
3D scenes is an important but highly challenging task. A
generative model on 3D scenes potentially provides infi-
nite training data for tasks such as scene segmentation,
autonomous driving, etc. Existing works [5, 25, 26, 46]
simplify this task by first generating 2D scenes and then
“lifting” them to 3D. Though such design is efficient for
city scenes populated with regular geometries (e.g., build-
ings), it does not generalize easily to scenes with more fine-
grained objects (e.g., pedestrians, cars, trees, etc.) In this
paper, we directly generate 3D outdoor scenes using dif-
fusion models, which include abundant small objects with
semantics.
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Figure 2. Framework of the proposed Pyramid Discrete Diffusion model. In our structure, there are three different scales. Scenes generated
by a previous scale can serve as a condition for the current scale after processing through our scale adaptive function. Furthermore, for the
final scale processing, the scene from the previous scale is subdivided into four sub-scenes. The final scene is reconstructed into a large
scene using our Scene Subdivision module.

3. Approach
The proposed Pyramid Discrete Diffusion (PDD) model
comprises multi-scale models capable of step-by-step gen-
eration of high-quality 3D scenes from smaller scales. The
PDD first extends the standard discrete diffusion for 3D data
(Section 3.2) and then proposes a scene subdivision method
to further reduce memory requirements (Section 3.3). Fi-
nally, we demonstrate two practical applications of PDD in
specific scenarios (Section 3.4).

3.1. Discrete Diffusion

We focus on learning a data distribution based on 3D se-
mantic scenes. Specifically, the semantic scene is repre-
sented in a one-hot format, i.e., X ∈ {0, 1}h×w×d×c, where
h, w, and d indicate the dimensions of the scene, respec-
tively, and c denotes the size of the one-hot label.

Discrete diffusion [2] has been proposed to generate dis-
crete data including semantic scenes. It involves applying
the Markov transition matrix on discrete states for noise
diffusion. In the forward process, an original scene X0

is gradually corrupted into a t-step noised map Xt with
t = 1, · · · , T . Each forward step can be defined by a
Markov uniform transition matrix Qt as Xt = Xt−1Qt.
Based on the Markov property, we can derive the t-step
scene Xt straight from X0 with a cumulative transition ma-
trix Q̄t = Q1Q2 · · ·Qt :

q (Xt | X0) = Cat
(
Xt;P = X0Q̄t

)
(1)

where Cat(X;P) is a multivariate categorical distribution
over the one-hot semantic labels X with probabilities given
by P. Finally, the semantic scene XT at the last step T is

supposed to be in the form of a uniform discrete noise. In
the reverse process, a learnable model parametrized by θ is
used to predict denoised semantic labels by p̃θ

(
X̃0 | Xt

)
.

The reparametrization trick is applied subsequently to get
the reverse process pθ (Xt−1 | Xt) :

pθ (Xt−1 | Xt) = Ep̃θ(X̃0|Xt)q
(
Xt−1 | Xt, X̃0

)
. (2)

A loss consisting of the two KL divergences is proposed to
learn better reconstruction ability for the model, given by

Lθ = dKL (q (Xt−1 | Xt,X0) ∥pθ (Xt−1 | Xt)) (3)

+ λdKL

(
q (X0) ∥p̃θ

(
X̃0 | Xt

))
,

where λ is an auxiliary loss weight and dKL stands for KL
divergence. In the following content, we focus on extending
the discrete diffusion into the proposed PDD.

3.2. Pyramid Discrete Diffusion

We propose PDD that operates various diffusion processes
across multiple scales (or resolutions), as depicted in Fig-
ure 2. Given a 3D scene data Z ∈ {0, 1}h×w×d×c, we
define a 3D pyramid including different scales of Z, i.e.,
{Z(1), · · · ,Z(l), · · · ,Z(L)}, where a larger l indicates a
larger scene scale. Formally, let hl ×wl × dl × c denote the
dimension of Z(l), hl+1 ≥ hl, wl+1 ≥ wl and dl+1 ≥ dl
are kept for l = 1, · · · , L− 1. We note that such a pyramid
can be obtained by applying different down-sample oper-
ators, such as pooling functions, on Z. For each scale in
the pyramid, we construct a conditional discrete diffusion
model parameterized by θl. The l-th model for l ̸= 1 is



given by:

p̃θl

(
X̃

(l)
0 | X(l)

t ,Z(l−1)
)

(4)

= p̃θl

(
X̃

(l)
0 | Concat

(
X

(l)
t , ϕ(l)(Z(l−1))

))
where X(l)

t and X
(l)
0 are with the same size of Z(l) , and ϕ(l)

is a Scale Adaptive Function (SAF) for upsamling Z(l−1)

into the size of Z(l). As a case in point, SAF can be a tri-
linear interpolation function depending on the data. Ad-
ditionally, we maintain the first model p̃θ1 as the original
non-conditional model.

During the training process, PDD learns L denoising
models separately at varied scales of scene pyramids in
the given dataset. Given that Z(l−1) is essentially a lossy-
compressed version of Z(l) , the model training can be
viewed as learning to restore the details of a coarse scene. In
the inference process, denoising model pθ1 is performed ini-
tially according to Equation (2) and the rest of PDD models
are executed in sequence from l = 2 to L via the sampling,

X
(l)
t−1 ∼ pθl(X

(l)
t−1 | X(l)

t ,X
(l−1)
0 ), (5)

where X
(l−1)
0 is the denoised result of p̃θl−1

.
Except for the high-quality generation, the proposed

PDD bears two merits: 1) Diffusion models in PDD can be
trained in parallel due to their independence, which allows
for a flexible computation reallocation during training. 2)
Due to its multi-stage generation process, PDD is fitting for
restoring scenes of arbitrary coarse-grained scale by start-
ing from the intermediate processes, thereby extending the
method’s versatility.

3.3. Scene Subdivision

To overcome the memory constraint for generating large 3D
scenes, we propose the scene subdivision method. We di-
vide a 3D scene Z(l) along z-axis into I overlapped sub-
components as {Z(l)

i }Ii=1. For the instance of four sub-
scenes case, let Z

(l)
i ∈ {0, 1}(1+δl)hl\2×(1+δl)wl\2×dl×c

denote one subscene and δl denote the overlap ratio, the l-
th diffusion model in PDD is trained to reconstruct Z(l)

i for
i = 1, · · · , 4. Subsequently, sub-scenes are merged into a
holistic one by a fusion algorithm, i.e., voting on the over-
lapped parts to ensure the continuity of the 3D scene.

In the training process, to ensure context-awareness of
the entire scene during the generation of a sub-scene, we
train the model by adding the overlapped regions with other
sub-scenes as the condition. In the inference process, the
entire scene is generated in an autoregressive manner. Apart
from the first sub-scene generated without context, all other
sub-scenes utilize the already generated overlapped region

as a condition, i.e.,

X
(l)
t−1,i ∼ pθ

X
(l)
t−1,i | X

(l)
t,i ,X

(l+1)
0,i ,

∑
j ̸=i

∆ij ⊙X
(l+1)
0,j

 ,

(6)
where j is the index of generated sub-scenes before i-th
scene, and ∆ij is a binary mask between X

(l+1)
0,i and X

(l+1)
0,j

representing the overlapped region on X
(l+1)
0,j with 1 and

the separate region with 0. In practice, we only implement
the scene subdivision method on the largest scale which de-
mands the largest memory.

3.4. Applications

Beyond its primary function as a generative model, we
introduce two novel applications for PDD. First, cross-
dataset transfer aims at adapting a model trained on a
source dataset to a target dataset [52]. Due to the flexi-
bility of input scale, PDD can achieve this by retraining
or fine-tuning the smaller-scale models in the new dataset
while keeping the larger-scale models. The strategy lever-
aging PDD improves the efficiency of transferring 3D scene
generation models between distinct datasets. Second, infi-
nite scene generation is of great interest in fields such as
autonomous driving [12] and urban modeling [22] which re-
quire a huge scale of 3D scenes. PDD can extend its scene
subdivision technique. By using the edge of a previously
generated scene as a condition as in Equation (6), it can
iteratively create larger scenes, potentially without size lim-
itations.

4. Experimental Results
4.1. Evaluation Protocols

Since the metrics used in 2D generation such as FID [14]
are not directly applicable in the 3D, we introduce and im-
plement three metrics to assess the quality of the generated
3D scenes. We note that more implementation details can
be found in the Appendix.

Semantic Segmentation results on the generated scenes
are used to evaluate the effectiveness of models in creat-
ing semantically coherent scenes. Specifically, two archi-
tectures, the voxel-based SparseUNet [13] and point-based
PointNet++ [35], are implemented to perform the segmen-
tation tasks. We report the mean Intersection over Union
(mIoU) and Mean Accuracy (MAs) for evaluation.

F3D is a 3D adaption of the 2D Fréchet Inception Dis-
tance (FID) [14], which is based on a pre-trained autoen-
coder with an 3D CNN architecture. We calculate and re-
port the Fréchet distance (by 10−3 ratio) between the gen-
erated scenes and real scenes in the feature domain.

Maximum Mean Discrepancy (MMD) is a statistical
measure to quantify the disparity between the distributions



Method Model Condition Segmentation Metric Feature-based Metric
mIoU (V) MA (V) mIoU (P) MA (P) F3D (↓) MMD (↓)

Ground Truth - - 52.19 72.40 32.90 47.68 0.246 0.108

Unconditioned
DiscreteDiff [2] - 40.05 63.65 25.54 38.71 1.361 0.599
LatentDiff [20] - 38.01 62.39 26.69 45.87 0.331 0.211

P-DiscreteDiff (Ours) - 68.02 85.66 33.89 52.12 0.315 0.200

Conditioned
DiscreteDiff [2] Point cloud 38.55 59.97 28.41 44.06 0.357 0.261
DiscreteDiff [2] Coarse scene (s1) 52.52 77.23 27.93 43.13 0.359 0.284

P-DiscreteDiff (Ours) Coarse scene (s1) 55.75 78.70 29.78 46.61 0.342 0.274

Table 2. Comparison of various diffusion models on 3D semantic scene generation of CarlaSC. DiscreteDiff [2], LatentDiff [20], and
P-DiscreteDiff refer to the original discrete diffusion, latent discrete diffusion, and our approach, respectively. Conditioned models work
based on the context of unlabeled point clouds or the coarse version of the ground truth scene. A higher Segmentation Metric value is
better, indicating semantic consistency. A lower Feature-based Metric value is preferable, representing closer proximity to the original
dataset. The brackets with V represent voxel-based network and P represent point-based network.

of generated and real scenes. Similar to our F3D approach,
we extract features via the same pre-trained autoencoder
and present the MMD between 3D scenes.

4.2. Experiment Settings

Datasets. We use CarlaSC [44] and SemanticKITTI [3]
for experiments. Specifically, we conduct our main exper-
iments as well as ablation studies on the synthesis dataset
CarlaSC due to its large data volume and diverse seman-
tic objects. Our primary model is trained on the training
set of CarlaSC with 10 categories and 32,400 scans. Se-
manticKITTI, which is a real-world collected dataset with
3,834 scans, is used for our cross-dataset transfer experi-
ment. Both datasets are adjusted to ensure consistency in
semantic categories, with further details in the Appendix.
Model Architecture. The primary proposed PDD is per-
formed on three scales of a 3D scene pyramid, i.e., s1, s2
and s4 in Table 1. We implement 3D-UNets [8] for three
diffusion models in PDD based on the scales. Notably, the
model applied on s4 scale is with the input/output size of
s′3 due to the use of scene subdivision, while such a size of
other models follows the working scale size. In the ablation
study, we also introduce the scale s3 in the experiment. Ad-
ditionally, we implement two baseline methods merely on
scale s4 which are the original discrete diffusion [2] and the
latent diffusion model with VQ-VAE decoder [20].
Training Setting. We train each PDD model using the same
training setting except for the batch size. Specifically, we
set the learning rate of 10−3 for the AdamW optimizer [27],
and the time step T = 100 for the diffusion process, and 800
for the max epoch. The batch sizes are set to 128, 32, and 16
for the models working on s1, s2 and s4 scales. However,
for the baseline method based on the s4 scale, we use the
batch size of 8 due to memory constraints. We note that all
diffusion models are trained on four NVIDIA A100 GPUs.
In addition, we apply the trilinear interpolation for the SAF
and set the overlap ratio in scene subdivision, δl to 0.0625.

Scale Rep. 3D Scene Size

s1 32× 32× 4
s2 64× 64× 8
s3 128× 128× 8
s′3 136× 136× 16
s4 256× 256× 16

Table 1. Different scales in the 3D scene pyramid.

4.3. Main Results

Generation Quality. We compare our approach with two
baselines, the original Discrete Diffusion [2] and the Latent
Diffusion [20]. The result reported in Table 2 highlights
the superiority of our method across all metrics in both un-
conditional and conditional settings. Our proposed method
demonstrates a notable advantage in segmentation tasks, es-
pecially when it reaches around 70% mIoU for SparseUNet,
which reflects its ability to generate scenes with accurate se-
mantic coherence. We also provide visualizations of differ-
ent model results in Figure 3, where the proposed method
demonstrates better performance in detail generation and
scene diversity for random 3D scene generations.

Additionally, we conduct the comparison on conditioned
3D scene generation. We leverage the flexibility of input
scale for our method and perform the generation by mod-
els in s2 and s4 scales conditioned on a coarse ground truth
scene in s1 scale. We benchmark our method against the
discrete diffusion conditioned on unlabeled point clouds
and the same coarse scenes. Results in Table 2 and Figure 5
present the impressive results of our conditional generation
comparison. It is also observed that the point cloud-based
model can achieve decent performance on F3D and MMD,
which could be caused by 3D point conditions providing
more structural information about the scene than the coarse
scene. Despite the informative condition of the point cloud,
our method can still outperform it across most metrics.
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Figure 3. Visualization of unconditional generation results on CarlaSC. We compare with two baseline models – DiscreteDiff [2] and
LatentDiff [20] and show synthesis from our models with different scales. Our method produces more diverse scenes compared to the
baseline models. Furthermore, with more levels, our model can synthesize scenes with more intricate details.
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Figure 4. Training time and memory usage for training PDD and
DD on CarlaSC dataset.

Computational Resources. Figure 4 depicts the GPU
training time and memory requirements for our PDD on
identical configurations. Using a logarithmic scale for train-
ing time emphasizes the efficiency gains of our method. The
initial training stage, PDD (s1), requires substantially less
time—up to 100 times less—compared to training the full
DD model. It also minimizes GPU memory usage, which
broadens the potential for deployment on hardware with
lower specifications. This enhanced efficiency extends to
subsequent scales, with the final scale, PDD (s4), only ne-
cessitating retraining at smaller scales. Such an approach
significantly cuts down on total training time and memory
usage, highlighting the pragmatic benefits of our pyramid
training architecture.

4.4. Ablation Studies

Pyramid Diffusion. Our experiments explore the impact
of varying refinement scales on the quality of generated
scenes. According to Table 3, both conditional and un-
conditional scene generation quality show incremental im-
provements with additional scales. Balancing training over-
head and generation quality, a three-scale model with the
scale of s4 progression offers an optimal compromise be-
tween performance and computational cost. We find that
as the number of scales increases, there is indeed a rise in
performance, particularly notable upon the addition of the
second scale. However, the progression from a three-scale
pyramid to a four-scale pyramid turns out to be insignifi-
cant. Given the substantially greater training overhead for
a four-scale pyramid compared to a three-scale one, we
choose the latter as our main structure.
Scene Subdivision. We explore the optimal mask ratio for
scene subdivision and report on Figure 6, which shows an
inverse correlation between the mask ratio and the effective-
ness of F3D and MMD metrics; higher mask ratios lead to
diminished outcomes. The lowest mask ratio test, 0.0625,
achieves the best results across all metrics, suggesting a bal-
ance between detail retention and computational efficiency.
Thus, we set a mask ratio of 0.0625 as the standard for



Figure 5. Visualization of conditional generation results on CarlaSC. PC stands for point cloud condition.

our scene subdivision module. Further analysis shows that
higher overlap ratios in scene subdivision result in quality
deterioration, mainly due to increased discontinuities when
merging sub-scenes using scene fusion algorithm.

Pyramid Cond
mIoU
(V)

mIoU
(P)

F3D
(↓)

MMD
(↓)

s4 × 40.0 25.5 1.36 0.60
s1 → s4 × 67.0 32.1 0.32 0.24

s1 → s2 → s4 × 68.0 33.9 0.32 0.20
s1 → s2 → s3 → s4 × 68.0 33.4 0.32 0.23

s1 → s4 ✓ 52.5 27.9 0.36 0.28
s1 → s2 → s4 ✓ 55.8 29.8 0.34 0.27

s1 → s2 → s3 → s4 ✓ 55.9 29.6 0.34 0.28

Table 3. Comparison of different diffusion pyramids on 3D se-
mantic scene generation.

Model No. Scale mIoU(↑) MA(↑) F3D (↓) MMD (↓)

1 s1 18.0 42.7 0.29 0.16
2 s2 43.7 66.8 0.29 0.18
3 s4 68.0 85.7 0.32 0.23

Table 4. Generation results on CarlaSC in different scales on the
diffusion pyramid without any conditions. All output scales are
lifted to s4 using the upsampling method.

4.5. Applications

Cross-dataset. Figure 8 and Figure 9 showcase our model’s
performance on the transferred dataset from CarlaSC to Se-
manticKITTI for both unconditional and conditional scene
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Figure 6. Effects of mask ratio on unconditional generation results.

Method
Finetuned

Scales Condition
mIoU
(V)

mIoU
(P)

F3D
(↓)

MMD
(↓)

DD [2] s4 × 29.1 16.0 0.46 0.31

PDD None ✓ 33.4 22.8 0.27 0.32
PDD s2, s4 ✓ 43.9 22.8 0.28 0.16

PDD s1 × 31.3 23.2 0.22 0.13
PDD s1, s2, s4 × 44.7 24.2 0.21 0.11

Table 5. Generation results on SemanticKITTI. Setting Finetuned
Scales to None stands for train-from-scratch and others stand for
finetuning corresponding pre-trained CarlaSC model.

generation. The Pyramid Discrete Diffusion model shows
enhanced quality in scene generation after finetuning with
SemanticKITTI data, as indicated by the improved mIoU,
F3D, and MMD metrics in Table 5. The fine-tuning pro-
cess effectively adapts the model to the dataset’s complex
object distributions and scene dynamics, resulting in im-
proved results for both generation scenarios. We also high-
light that, despite the higher training efforts of the Discrete
Diffusion (DD) approach, our method outperforms DD even
without fine-tuning, simply by using coarse scenes from
SemanticKITTI. This demonstrates the strong cross-data
transfer capability of our approach.
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This involves the initial efficient synthesis of a large-scale coarse 3D scene, followed by subsequent refinement at higher levels.
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Figure 8. SemanticKITTI unconditional generation. FT stands for
finetuning pre-trained model from CarlaSC.

Infinite Scene Generation. Figure 7 demonstrates our
model’s ability to generate large-scale, coarse-grained
scenes beyond standard dataset dimensions. This initial
scale precedes a refinement process that adds detail to these
expansive outdoor scenes. Our model produces continu-
ous cityscapes without needing additional inputs. Using our
method, it is possible to generate infinite scenes. The figure
shows the generation process in scales: beginning with a
coarse scene, it focuses on refining a segment into detailed
3D scenes.

5. Conclusion

In this work, we introduce the Pyramid Discrete Diffusion
model (PDD) to address the significant challenges in 3D
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Figure 9. SemanticKITTI conditional generation. Our proposed
PDD achieves results close to the groundtruth. Note that FT stands
for finetuning from CarlaSC models.

large scene generation, particularly in the limitations of
low-resolution and available datasets. The PDD demon-
strates a novel approach in progressively generating high-
quality 3D scenes from coarse to fine. Compared to the
other methods, the PDD can generate high-quality scenes
within limited resource constraints and does not require ad-
ditional data sources. Our experiments highlight its im-
pressive performance in both unconditional and conditional
generation tasks, offering a robust solution for realistic
and detailed scene creation. Looking forward, our pro-
posed PDD method has great potential in efficiently adapt-
ing models trained on synthetic data to real-world datasets
and suggests a promising solution to the current challenge
of limited real-world data.
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